[PDF] Exercices dÉlectrocinétique Exercices d'Électrocinétique La





Previous PDF Next PDF



Exercices sur les réseaux électriques en courant continu

Théorème de Millman littéral par les lois de Kirchhoff (35 PTS) L'objectif de cet exercice étant de démontrer le théorème de Thévenin à partir d'un exemple.



Amplificateur opérationnel en régime linéaire: corrigés des exercices

Exercice 8. 1. On utilise le théorème de Millman pour déterminer UA : ⇒. (. ) ⇒. (. ) UA = -2V. 2. ⇒. (. ) ⇒. (. ) US1 = -6V. 3. Page 10. electroussafi.ueuo 



∑ ∑ ∑ ∑ ∑

Exercice 1 : I1. I2. I3. Exercice 2 : I1. I2. I3. 2) THEOREME DE MILLMAN. Calculer la tension aux bornes de R3 ainsi que le courant i3 qui la traverse. On donne 



Theoreme de millman exercice corrigé pdf

Theoreme de millman exercice corrigé pdf. Le théorème de Millman est une forme particulière de la loi des nœuds exprimée en termes de potentiel. Il est ainsi 



Électronique - Tout le cours en fiches

Corrigés des exercices. 343. Annexes. 429. Index. 435. Page 7. VII. © Dunod. T Le théorème de Millman est un outil extrêmement intéressant surtout si on le ...



Contrôle délectricité- AI2 –Juin 2017 Enseignant (L.Gry) Exercice 1 Contrôle délectricité- AI2 –Juin 2017 Enseignant (L.Gry) Exercice 1

2 juin 2017 Exercice 1 : théorème de Millman (3 points). Soit un réseau de trois ... Corrigé. Exercice 1. 1) Notons les intensités traversant respectivement.



resolution par la methode de norton millman et kennely

théorème de Thevenin (RN = RTh). 1.3 – Applications. 1.3.1 - Exercice 1. On considère le circuit électrique donné par la figure suivante : ▫ On donne : E = 8 ...



Théorème de Millman Théorème de Millman

Théorème de Millman. Généralisation. U = ∑. ∑. ∑. Page 2. electroussafi.ueuo.com. 2/4. N. ROUSSAFI electroussafi.ueuo.com. Théorème de Millman. Exercice 1.



Theoreme de millman exercice corrigé pdf Theoreme de millman exercice corrigé pdf

Théorème de millman exercice corrigé pdf. Le théorème de Millman fait partie des « outils mathématiques » de base de l'électronicien c'est pourquoi je vous 



Electricite. Exercices et methodes

exercice : Dans un circuit simple le théorème de Millman



Electricite. Exercices et methodes

Tous les exercices et problèmes sont entièrement corrigés la résolution le théorème de Millman et la loi des mailles



EXERCICES DELECTRICITE REGIME CONTINU ENONCES

Exercice 7. Calculer l'intensité du courant dans la branche AB en appliquant : • les lois de Kirchhoff. • le théorème de Millman.



resolution par la methode de norton millman et kennely

MILLMAN ET KENNELY. 1 - METHODE DE NORTON. 1.1 - Introduction. Le théorème de Norton va nous permettre de réduire un circuit complexe en générateur de 



Chapitre 7 Théorèmes de superposition Thévenin et Norton

2.4 Théorème de Norton en régime alternatif sinusoïdal permanent. Exercice 6 : Théorème de Millman. ... Corrigés en ligne :.



Rseaux lectriques en courant continu

Ces exercices correspondent aux chapitres 0 1 et 2 de la ressource Baselecpro sur le site IUTenligne. Un corrigé avec barème de correction est remis aux 



Electricite. Exercices et methodes

Théorèmes généraux de l'électricité en régime continu Tous les exercices et problèmes sont entièrement corrigés la résolution étant systématiquement.



Travaux dirigés dElectrocinétique n°2

Exercice 9 : Circuit à deux nœuds indépendants – Théorème de Millman. 1. Déterminer l'intensité i du courant circulant dans la.



exercices incontournables

13 mai 2017 Exercice 1.1 : Montages fondamentaux avec des amplificateurs ... Le théorème de Millman ou la loi des nœuds en termes de potentiels à tous ...



Exercices dÉlectrocinétique

Exercices d'Électrocinétique La relation obtenue constitue le théorème de Kennelly. Rép : r1 = ... appliquant le théorème de Millman.



Ministère de lenseignement supérieur et de la recherche scientifique

Ce manuel cours et des travaux dirigés corrigés est un outil nécessaire pour les Exercice 5: (Théorèmes: Kirchhoff



Exercice corrigé sur La Théorème de Millman - Circuits électriques

Exercice corrigé sur La Théorème de Millman - Circuits électriques · Exercice 1- 3 sources et 3 résistances en parallèle · Exercice 2 - le théorème de Millman  



[PDF] Théorème de Millman - Electroussafi

Ce théorème très pratique permet de déterminer la différence de potentiel aux bornes de plusieurs branches en parallèle Soit un circuit linéaire en régime 



Théorème de Millman : démonstration + exercices corrigés

8 déc 2021 · Découvrez une démonstration du théorème de Millman avec des exemples d'exercices corrigés utilisant des ampli op condensateurs 



[PDF] Electricite Exercices et methodes

Fiche 1 Théorème de Millman Le théorème de Millman permet d'exprimer le potentiel en un nœud quelconque d'un réseau en fonction des potentiels aux nœuds 



Le théorème de Millman - DZ4ONE

19 jui 2017 · Exercice corrigé sur La Théorème de Millman - Circuits électriques Exercice 1- 3 sources et 3 résistances en parallèle



[PDF] resolution par la methode de norton millman et kennely

La résistance interne RN s'obtient de la même façon que celle du théorème de Thevenin (RN = RTh) 1 3 – Applications 1 3 1 - Exercice 1



[PDF] Exercices sur les réseaux électriques en courant continu - IUTenligne

Ces exercices correspondent aux chapitres 0 1 et 2 de la ressource Baselecpro sur le site IUTenligne Un corrigé avec barème de correction est remis aux 



Exercices Corrigés Thevenin Norton Millman Superposition PDF

14 sept 2021 · Comme toutes les autres théories/lois mathématiques et scientifiques le théorème de Thévenin a été inventé par l'homme lui-même Léon Charles 



Exercice 1 : Démonstration du théorème avec 3 branches - YouTube

13 oct 2021 · Cet exercice propose de démontrer le théorème de Millman en se limitant à un schéma contenant 3 Durée : 9:35Postée : 13 oct 2021



[PDF] Electricite_Generale_Abpdf - Soyed

Ce manuel cours et des travaux dirigés corrigés est un outil nécessaire pour les Exercice 5: (Théorèmes: Kirchhoff Superposition et Millman)

  • Comment appliquer le théorème de Millman ?

    Le théorème de Millman s'applique à un circuit électrique constitué de n branches en parallèle. Chacune de ces branches comprenant un générateur de tension parfait en série avec un élément linéaire (comme une résistance par exemple). Ca s'applique aussi bien en continu comme en alternatif sinuso?l.
  • Comment calculer Millman ?

    Remarque : comme l'impédance d'un condensateur Zc vaut 1 / jCw, et que dans Millman on se sert de 1 / Zc, il faut donc bien comprendre que 1 / Zc = 1 / 1 / jCw, d'où 1 / Zc = jCw.8 déc. 2021
  • Comment calculer e Thévenin ?

    On définit le générateur de Thévenin, défini en amont des points A et B en le séparant de la branche 3 (amont de AB à vide). Le calcul de cette tension est simple, il suffit de calculer le courant I qui circule dans la maille (B, E1 , R1 , R2 , E2 , B). On obtient : puis de calculer UAB0 = E2 + R2 .
  • La méthode consiste à ne faire agir qu'une seule source à la fois. Dans un premier temps on prendra E2 = 0 et on calculera U01 ( source E1 agissant seule ). Dans un deuxième temps on prendra E1 = 0 et on calculera U02 ( source E2 agissant seule ). Pour exprimer U0 il suffit de faire : U0 = U01 + U02 .

Exercices d"´Electrocin´etique

?Intensit´e et densit´e de courant E1? ???Ex-E1.1Vitesse des porteurs de charges : On dissout une massem= 20gde chlorure de sodiumNaCl dans un bac ´electrolytique de longueurl= 20cmet de section S= 10cm×10cmrempli d"eau. La dissolution est totale. On fait passer un courant d"intensit´eI= 100mAentre deux ´electrodes situ´ees aux extr´emit´es de la cuve.

Donn´ees :masses molaires :

M(Cl) = 35,5g.mol-1etM(Na) = 23g.mol-1.

Nombre d"AvogadroestNA= 6,02.10-23mol-1; charge ´el´ementaire este= 1,6.10-19C.

©Q :Sachant que les vecteurs vitesse des ions chlorure et des ions sodium sont de sens oppos´es

et dans le rapport 1,5, d´eterminer la vitesse et le sens de d´eplacement de ces ions.

R´ep :v+?= 2,4.10-7m.s-1;v-?= 3,6.10-7m.s-1.

???Ex-E1.2Semi-conducteur :Les semi-conducteurs sont des mat´eriaux utilis´es en ´electronique

et dont la conduction varie fortement avec la temp´erature ou avec la pr´esence d"impuret´e. Dans

un semi-conducteur, il existe deux types de porteurs de charge : ◦les ´electrons, de chargeqe=-e, de densit´ene; ◦et les trous, de chargeqp= +e, de densit´enp.

`A une temp´erature donn´ee, du fait des propri´et´es dues aux liaisons internes au semi-conducteur,

le produitnenp=n2iest constant.

La pr´esence d"impuret´es (= atomes '´etrangers" au r´eseau) permet de modifierneetnptout en

maintenant le produitnenpconstant. En l"absence d"impuret´es, ces deux valeurs sont ´egales :ne=np=ni.

Pour le silicium, nous avons :ni= 1,5.1016m-3.

Dans les conditions d"´etude, la vitesse des ´electrons estve= 12cm.s-1et celle des trousvp=

5cm.s-1.

1)D´eterminer la densit´e de courant du silicium dans les conditions d"´etude.

2)Comment varie la densit´e de courantjavecne? Tracer l"allure de la courbe correspondante

j=j(ne) et expliquer l"int´erˆet de la pr´esence d"impuret´es dans le silicium utilis´e en ´electronique.

R´ep : 1)j= 4,1.10-4A.m-2;

2)jmin=j0= 3,7.104A.m-2pourne,0=ni?

vP ve= 9,7.1015m-3. ?Calculs de tensions et de courants E2? ???Ex-E2.1R´eseau `a deux mailles D´eterminer, pour le circuit ci-contre, l"intensit´eiqui traverse la r´esistanceR2et la tensionuaux bornes de la r´esistanceR3:

1)en faisant des associations de r´esistances et en appliquant le

diviseur de tension.

2)en faisant une transformationTh´evenin→Nortonet en

appliquant le diviseur de courant. E R1 R3R 2 R 4ui

3)Application num´erique pourE= 6V,R1= 100 Ω,R2=R3=R4= 50 Ω

R´ep : 1/2)i=R3E

R1R3+ (R1+R3)(R2+R4);u=R3(R2+R4)ER1R3+ (R1+R3)(R2+R4);

3)i= 15mAetu= 1,5V.

Exercices d"´Electrocin´etique2008-2009

???Ex-E2.2Circuit lin´eaire

Dans le circuit ci-contre :

1)CalculerUEF,

2)Calculer l"intensit´eI0circulant dans

la branche principale;

3)Calculer l"intensit´eI?circulant dans

la branche contenant le g´en´erateurE? (pr´eciser son sens);

4)Calculer les intensit´esi1,i2eti3.

Donn´ees :

R= 1Ω,E= 5VetE?= 3V.

E2R RA B E" 2RR R R R C D E F I0i 1 i 2 i 3 R´ep :UEF?1,67V;I0?0,83A;I??0,17A;i1=i3?0,33A;i2?0,17A.? ???Ex-E2.3Distribution de courant sur les arˆetes d"un cube Le courant d"intensit´eIarrive sur le sommetAd"un cube dont les arˆetes sont constitu´ees par un fil m´etallique; chaque arˆete a une r´esistancer. Le courant ressort par le sommetHoppos´e `aA.

1)Calculer les intensit´es dans chaque branche.

2)SoitVA=VetVH= 0Vles potentiels des pointsAetH. Calculer

les potentiels des diff´erents sommets.

3)Quelle est la chaleur dissip´ee dans le cube par unit´e de temps?

A.N. :I= 500mAetr= 0,2 Ω.

R´ep : 2)VE=VF=VG=rI3=25V;VB=VD=VC=VA-rI3=35V;

3)PJ=δQ

dt=56rI2?42mW. ?Association de g´en´erateurs ???Ex-E2.4Mod´elisation de Th´evenin (1) Donner le g´en´erateur deTh´evenin´equivalent au circuit ci-contre entreAetB.

R´ep :R´eq=R

2etETh=e+Rη.

???Ex-E2.5Mod´elisation de Th´evenin (2)

D´eterminer le g´en´erateur

deTh´evenin´equivalent au r´eseau dipolaire entre les bornesAetBci-contre.

Donn´ees :η= 1A,R= 6Ω

etE= 24V. E2R R2RA Bh5h EThR eq B A

R´ep :Req=R2= 3 Ω etETh= 2Rη+E4= 18V

?Calculs de r´esistances ´equivalentes ???Ex-E2.6R´esistance ´equivalente d"un r´eseau dipolaire (1) Calculer la r´esistance´equivalente `a un r´eseau `a mailles carr´ees, chaque cˆot´es ayant la r´esistancer.

R´ep :R´eq=13

7R A E GD C M N F BI I

2http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

???Ex-E2.7R´esistance ´equivalente d"un r´eseau dipolaire (2) Chaque trait repr´esente un r´esistor de r´esistanceR. D´eterminer la r´esistance ´equivalente de ce r´eseau vu des points :

1)A et C (5R/4)2)A et E (3R/2)3)A et F (7R/8)

4)B et D (5R/6)5)H et D (R)6)A et B (17R/24)

7)B et F (7R/12)ABC

H FD G JE ???Ex-E2.8Th´eor`eme de Kennelly (`A comprendre!) On consid`ere les deux circuits ci-dessous : celui de gauche est appel´e le circuit" étoile » et celui de droite circuit " triangle ». Exprimer les résistancesr1,r2etr3 du circuit étoile en fonction des résistancesR1,R2et R

3du circuit triangle pour que les deux circuits soient

équivalents. La relation obtenue constitue le théorème deKennelly. R´ep :r1=R2R3R1+R2+R3,r2etr3se d´eduisent par permutation circulaire des indices. ???Ex-E2.9R´esistance ´equivalente d"un r´eseau dipolaire (3)

1)Calculer la r´esistance ´equivalente du r´eseau suivant :

a.en utilisant les lois deKirchoff. b.en utilisant les regroupements de r´esistances (s´erie, pa- rall`ele, triangle-´etoile).

2)On applique entreAetBune tensionU= 11V.R

A BC D RR R R1 2 2 1 Calculer l"intensit´e du courant dans la branche CD avec :R1= 2R,R2= 4R, etR= 1 Ω.

R´ep : 1)R´eq=2R1R2+RR1+RR2

2R+R1+R2;2)I=IC→D=U11R= 1A.

´Equation diff´erentielle et Conditions initiales d"un circuit ???Ex-E2.10Deux bobines r´eelles en parall`ele D´eterminer, dans le cas particulier o`uR1L2=R2L1, l"´equation diff´erentielle liant la tensionuet le courantidans le montage ci-contre, constitu´e de deux bobines r´eelles en parall`ele.

R´ep :(L1+L2)u=L1L2di

dt+R2L1i ???Ex-E2.11Deux condensateurs r´eels en s´erie D´eterminer l"´equation diff´erentielle liant la tensionuet le courantidans le montage ci-contre, constitu´e de deux conden- sateurs avec fuite en s´erie. On noterau1etu2les tensions aux bornes de chaque condensateur. R´ep :Cas o`uR2C2=R1C1: (C1+C2)i=C1C2dudt+C1R2u. ???Ex-E2.12Filtre de Wien (Exercice important!) Le montage ci-contre comporte deux r´esistances identiquesRet deux condensateurs de capacit´es identiquesC.

1)´Ecrire l"´equation diff´erentielle liant la tension de sortievaux

bornes du condensateur et la tension d"entr´eeu.

2)`A l"instant initial, les deux condensateurs sont d´echarg´es et la tensionu=Eest constante.

D´eterminer les conditions initiales portant survetdv dtjuste apr`es le branchement du circuit : v(0+) etdv dt(0+). qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/3

Exercices d"´Electrocin´etique2008-2009

R´ep : 1)dudt=RCd2vdt2+ 3dvdt+vRC;2)v(0+) = 0 etdvdt(0+) =ERC. ???Ex-E2.13Bobine r´eelle en s´erie avec un condensa- teur avec fuites Une bobine r´eelle d"inductanceLposs`ede une r´esistance r. Elle est plac´ee avec un condensateur de capacit´eCet de r´esistance de fuiteR.

1)D´eterminer l"´equation diff´erentielle liant l"intensit´ei

et la tensionu.

2)`At= 0, la tension aux bornes du condensateur vautv0et pourt≥0, on imposeu= 0 grˆace

`a un court-circuit. Juste apr`es l"installation du court-circuit, que valenti(0+)?v(0+)?di dt(0+)? etdvdt(0+)?

R´ep : 1)LCd2i

dt2+? rC+LR? didt+?

1 +rR?

i=uR+Cdudt

2)i(0+) = 0;v(0+) =v0;di

dt(0+) =-v0L;dvdt(0+) =-v0RC.

Solution Ex-E2.1

1)Apr`es avoir introduit et nomm´e les noeuds, on peut introduire la

r´esistance ´equivalente `aR2etR4qui sont en s´erie :R5=R2+R4 •Il apparaˆıt queR3est en parall`ele avecR5.

En simplifiant :R6=R3//R5=R3R5

R3+R5.

•On reconnaˆıt un diviseur de tension,R1etR6´etant en s´erie, sou- mises `a la tensionE:UAB=R6

R1+R6E=R3R5R3+R5ER1+R3R54R3+R5

Soit :u=UAB=R3(R2+R4)

R1R3+ (R1+R3)(R2+R4)E

•i=UABR5sur le premier sch´ema ´equivalent.

Soit :i=R3E

R1R3+ (R1+R3)(R2+R4).

E R1 R3ui ?R 5A B E R1 R6u? ?A B

Rque : Attention!in"apparaˆıt plus sur le second sch´ema ´equivalent. Il fallait revenir au

premier sch´ema ´equivalent pour l"exprimer.

2)On introduit et on nomme les noeuds. On reconnaˆıt un g´en´erateur

deTh´evenindef.´e.m.Eet de r´esistance interneR1entreAetB. On peut faire une transformationTh´evenin→Norton.

Il apparaˆıt lec.´e.m.:η=E

R1. •R1etR3sont en paral`ele, de r´esistance ´equivalente :R0=R1R3

R1+R3.

•R0est en parall`ele avecR5,mais on ne simplifie pas!car : - on cherchei - on reconnaˆıt un diviseur de courant au noeudAaliment´e parη:

R5ηui

?A B R0

R3ηui

?R 5A B R1 i=R0

R0+R5η=R1R3R1+R3.1R1R3

R1+R3+R2+R4.ER1. Soit :i=R3ER1R3+ (R1+R3)(R2+R4).

4http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

•PuisqueUAB=R5i, on retrouve :u=UAB=R3(R2+R4)R1R3+ (R1+R3)(R2+R4)E

3)i= 15mAetu=UAB= 1,5V.

Solution Ex-E2.2

1)On reconnaˆıt un montage" Diviseur de tension » entreDetF,

donc :UEF=R

R+ 2RE?= 1V

2)• Il faut d"abord exprimer la résistance équivalenteReqentreBetC.

R eq= (R//R)//2R=R

2//2R=25R

• Du point de vue de la branche principale, la branche{D,2R,R,F}est inutile puisqu"une force éloctromotriceE?en parallèle impose la tension à ses bornes. On peut donc l"enlever sur un schéma équivalent.

Il apparaît deux forces électromotrices en série qui s"oppose : on peut donc les remplacer par une

seule et uniquef.é.m.de valeurE0=E-E?= 2V et de même sens queE. • Le circuit est maintenant équivalent à un circuit formé d"une seule maille - parcourue parI0, - constitué d"unef.é.m.E0de même sens queI0 - et d"une résistance équivalenteR0=R+Req+R=12 5R. →la loi des mailles donneI0=E0

R0=512R(E-E?) =56A≈0,83A

3)• Pour connaître l"intensitéI?circulant dans la branche contenantE?on calcule d"abord

l"intensitéI??qui circule deDversFdans la branche contenant les résistances2R+R= 3R soumises à la tensionE?. La loi d"Ohmdonne, en convention récepteur :I??=E?

3R= 1A

• On en déduit donc, d"après la loi des noeuds et en définissantI?par rapport àE?en convention

générateur, queI?=I??-I0=1

6A≈0,17A(I?dirigée deFversD).

4)• Tout d"abord, les symétries imposent quei1=i3

On reconnaît ensuite entreBetCun diviseur de courant : • On a donc :i1=G1

GeqI0=ReqRI0=?i1=i3=25I0=13A≈0,33A

• De même :i2=G2GeqI0=Req2RI0=?i2=15I0=16A≈0,17A • On vérifie bien entendu la loi des noeuds enB:I0=i1+i2+i3. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/5

Exercices d"´Electrocin´etique2008-2009

???Ex-E2.14Groupement diode id´eale-r´esistances Représenter la caractéristique Intensité-TensionI(U)du di- pôle équivalent au groupement entre les points A et B. ABUR R' I ???Ex-E2.15Diviseur de Tension (G´en´eralisation) Montrer que la loi à laquelle obéit ce diviseur de tension est : U AB=R2

R1+R2e0-R1R2R1+R2i

e0R 1 R 2A Bi U AB ???Ex-E2.16Alimentation d"une diode (*)

Le montage de la figure ci-contre montre un en-

semble de générateurs associés avec une résis- tanceR3et une diode à jonction. Celle-ci est idéale, sans résistance dynamique, et possède une tension de seuilUS.(e1 , r1) R 1R2A B U AB R3(e

2 , r2)

i En supposant que la diode est polarisée dans le sens direct, et est parcourue par un couranti non nul, exprimerien fonction dee1,e2,US,R1,R2,R3,r1etr2. À quelle condition portant sur ces grandeurs l"hypothèsei?= 0est-elle justifiée?

Rép :i >0pourR3(r2+R2)e1+R3(r1+R1)e2

R3(r2+R2+r1+R1) + (r1+R1)(r2+R2)> US

???Ex-E2.17Protection d"une diode Zener (**) Déterminer la valeur maximaleEmaxde la tension continue

Epour que la diodeZenerne claque pas.

Les caractéristiques de la diodeZenersont :

◦la tensionZenerUZ; E R R' ◦ρla résistance dynamique en régimeZener; ◦ P maxla puissance maximale que la diode peut recevoir; ◦imaxetVmaxl"intensité et la tension maximales que la diode supporte en régimeZener.

Rép :Emax=1

2(UZ+?U2Z+ 4ρPmax)?

1 +RR?+Rρ?

-RUZρ ???Ex-E2.18´Equivalence entre g´en´erateur de tension et g´en´erateur de courant (*)

Soit le circuit ci-contre avec :E= 4V,r= 2 Ω.

E ?est un électrolyseur de force contre-électromotrice égale à E ?= 1,5V.

EntreAetB, la résistance totale est de12 Ω.

On pourra poser :R2=xetR1= 12-x.

→Déterminer la valeur de l"intensitéidans la branche de l"électrolyseur en fonction de la position du curseur du po- tentiomètre, donc de la valeur dex. E' EEr A BC D x i Rép :i=8x-6612x-x2+ 24pouri >0, ce qui revient à dire que8,25 Ω< x <12 Ω.

6http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

?R´eseaux lin´eaires en r´egime continuE3? ???Ex-E3.1Pont de Weahtsone Un pont deWeahtsoneest un montage électrique permettant de déterminer une résistance inconnue.

1)Équilibrage du pont

La résistance à déterminer estR1.

Les résistancesR3etR4sont fixes et connues.

R

2est une résistance variable dont on connaît la

valeur.

Le pont est ditéquilibrélorsque la tensionu

mesurée entreCetDest nulle. a)Déterminer la tensionuen fonction deEet des résistancesR1,R2,R3etR4. b)À quelle condition le pont est-il équilibré? Déterminer alorsR1. Données :R3= 100Ω;R4= 5kΩ;R2= 1827Ω;E= 6V. c)Le voltmètre indique la tension "u= 0» si, en réalité, on a :|u|<1mV. →Dans le cadre de l"application numérique de la questionb), donner la précision sur la mesure deR1.

2)Présence d"une f.é.m parasite

Le pont précédent est supposé équilibré, c"est-à- dire qu"on a rigoureusementu= 0. Nous allons maintenant étudier l"influence d"une force électromotriceesur l"équilibre du pont (eest placé en série avec la résistance; cela peut modéliser une tension apparue lors du contact de deux matériaux de nature chimique différente.) a)Exprimer la tensionuapparue à cause de la présence dee. b)On veut que l"influence deesoit négligeablequotesdbs_dbs35.pdfusesText_40
[PDF] loi de kirchhoff exercice corrigé pdf

[PDF] exercices électrocinétique corrigés

[PDF] exercice electrocinétique thevenin

[PDF] theoreme de thevenin et norton exercice corrigé pdf

[PDF] diviseur de tension et de courant exercices corrigés

[PDF] théorème de superposition électronique

[PDF] leçon électricité cm1

[PDF] calcul puissance electrique maison

[PDF] calcul amperage maison

[PDF] calcul puissance electrique monophasé

[PDF] exposé sur l'électricité cm2

[PDF] circuit électrique cycle 2

[PDF] les dangers de l'électricité ce1

[PDF] électricité cycle 3 lutin bazar

[PDF] électricité ce2 lutin bazar