[PDF] examens-corriges-analyse-complexe.pdf





Previous PDF Next PDF



examens-corriges-analyse-complexe.pdf

Corrigé de l'examen 1. Exercice 1. (a) Voici une figure élémentaire. ω z0. Dr = pRe s > 1 un théorème du cours assure que : ζ(s) = ∏ p∈P. 1. 1 − 1 ps.



Analyse complexe

Page 1. Analyse complexe. Cours et exercices corrigés. André Giroux. Département de mathématiques et statistique. Université de Montréal. 2013. Page 2. Page 3 



Exercices corrigés pour lanalyse complexe Exercices corrigés pour lanalyse complexe

04‏/06‏/2022 4. + i. √. 3 − 1. 4 . Page 22. 14. Nombres complexes. Par conséquent l'ensemble des points est le cercle de centre z0 et de rayon 2. Exercice ...



Exercices corrigés pour lanalyse complexe Exercices corrigés pour lanalyse complexe

25‏/08‏/2021 i. (z + 1 z − 1. ) ∈ R. Page 16. 8. Nombres complexes. Exercice 1.9. Soit θ ∈ ...



Analyse Complexe (Math 4)

1. 6 et représenter les résultats dans le plan complexe. Exercice 0.6. Solution 1. 2. ( z +. 1 z. ) . Exercice 3.6. Solution. On pose z = eiθ. D'o`u dz = ...



Cours Exercices Examens Corriges Comptabilite Semestre 1 رقم

• Elle est la base de l'analyse financière. • Elle est un outil d'information ديون مرتبطة بمساهمات خارج المجمع. 268 Créaces rattachés à des sociétés en ...



Polycopié dexercices et examens résolus: Mécanique du point Polycopié dexercices et examens résolus: Mécanique du point

Caractériser le vecteur vitesse de la balle lors de son impact sur le sol. Corrigé : 1. La méthode est rigoureusement la même que pour l'exercice de 



Analyse complexe

Fonctions dZune variable complexe. 24. 2.4 Exercices. 2.4.1 Exercices résolus. Exercice 2.1 Soit la fonction w φ. 1. 2 ( z +. 1 z . Calculer u et ѵ si w φ u + 



Analyse Complexe S´eries de Fourier

Ce polycopié contient la mati`ere du cours “Analyse II (analyse complexe)” enseigné pendant les =1+ w2 (exercice 32). Fonction inverse. Soit w = f(z) avec w0 ...



Examen dAnalyse Complexe

être soigneusement justifiées; la correction récompensera la rigueur précision et clarté des démonstrations. Exercice 1. 1. Question de cours : définir l 



examens-corriges-analyse-complexe.pdf

1. Examen 1. Exercice 1. Soit un ouvert connexe non vide ? ? C D'après le cours



Polycopié dexercices et examens résolus: Mécaniques des

Ces exercices couvrent les sept chapitres du polycopié de cours de la mécanique des systèmes indéformables : Calcul vectoriel-Torseurs. Cinématique du solide



Cours danalyse 1 Licence 1er semestre

1 Les nombres réels et complexes 7 Corrigé des exercices ... Dans ce cours nous prenons cette représentation décimale comme définition d'un nombre réel.



Analyse complexe pour la Licence 3 : Cours et exercices corrigés

Cours et exercices corrigés. SCIENCES SUP. ANALYSE COMPLEXE Les chapitres 1 à 3 constituent des révisions concernant un programme usuel de Li-.



EXAMEN DANALYSE COMPLEXE: 3M266

14 mai 2019 Mai 2019. CORRIGÉ EXAMEN 3M266. Exercice 1. 1. ... intégrales à paramètre (théorème 5.7 du cours) permet de conclure que ? définit une ...



Polycopié dexercices et examens résolus: Mécanique du point

Caractériser le vecteur vitesse de la balle lors de son impact sur le sol. Corrigé : 1. La méthode est rigoureusement la même que pour l'exercice de 



ficall.pdf

le cours d'analyse. [007201]. Exercice 159 l'ensemble D des nombres complexes z tels que



Analyse Complexe Alain Yger

Annexe B. Texte et corrigé - Examen 2011-2012 m'a aussi beaucoup servi ; les exercices accompagnant ce cours correspondent en fait.



Exercices corrigés dAnalyse financière

La société Lucifer vous communique la liste des comptes de gestion par soldes



Analyse combinatoire et probabilités - Exercices et corrigés

2 janv. 2016 b) On tient compte de la casse et des couleurs ? FIGURE 1 –. Solution. 2.1.12 Exercice Combien de nombres différents... Combien de nombres ...

Examens corrigés

FrançoisDEMARÇAY

Département de Mathématiques d"Orsay

Université Paris-Saclay, France

1. Examen 1

Exercice 1.Soit un ouvert connexe non vide!C, soitz02!, et soit une fonction f2O(!nfz0g)holomorphe en-dehors dez0. On suppose quefest bornée au voisinage de z

0, au sens où il existe un rayonr >0assez petit avecD

r(z0)!et il existe une constante

06M<1tels que :

sup jzz0jOn fixez12Dr(z0)avecz16=z0. (a)Dresser une figure illustrative complète et esthétique. (b)Montrer, pour0< "612 jz1z0j, que pour tout2C"(z0), on ajz1j>12 jz1z0j. (c)Montrer que :

0 =lim"!>0Z

C "(z0)f()z1d: (d)Soient les deux points :

1:=z0+rz1z0jz1z0j;

0:=z0rz1z0jz1z0:

Soient aussi deux quantités petites0< < "613

jz1z0j. On construit le contour;" àdeuxtrous de serrure de largeur2qui partent orthogonalement du cercleCr(z0)en les deux points1et0, avec contournement dez1puis dez0le long de cercles de rayon". Dresser une nouvelle figure esthétique dans laquelle tous ces éléments apparaissent clai- rement - couleurs recommandées! (e)Justifier par un théorème du cours que : 0 =Z ;"f()z1d: (f)Montrer que : 0 = 12iZ C r(z0)f()z1d12iZ C "(z1)f()z112iZ C "(z0)f()z1d: 1

2 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(g)Montrer que :

f(z1) =12iZ C r(z0)f()z1d: (h)Justifier l"holomorphie dansDr(z0)de la fonction : z7!Z C r(z0)f()zd: (i)Montrer qu"il existe une unique fonction holomorpheef2O(!)telle queef!nfz0g=f.

(j)Montrer que tout ce qui précède est encore valable en supposant plus généralement qu"il

existe un exposant06 <1et une constante06M<1tels que : f(z)6M1jzz0j(800. L"objectif est de calculer, au moyen de la méthode des résidus, les deux intégrales de Riemann généralisées : I:=Z 1 01x

2+a2dxetJ:=Z

1

0logxx

2+a2dx:

(a)Commencer par justifier l"existence deI. (b)On introduit la fonctionf(z) :=1z

2+a2. CalculerResf(ia).

(c)AvecR> a, dessiner le contour orienté fermé consistant en le segment[R;R]suivi du demi-cercle de rayonRau-dessus de l"axe réel. (d)Montrer que :

0 =lim

R!1Z

0d(Rei)(Rei)2+a2:

(e)Montrer que : I=2a: (f)On choisit la détermination de la fonction logarithme complexe sur : CiR; définie, pourz=reiavecr >0et avec2 < <32 , parlogz:=logr+i. Sur cet ouvertCniR, on considère la fonction holomorphe : g(z) :=logzz 2+a2: Avec0< " < aet avecR> a, dessiner le contour orienté fermé consistant en le segment[R;"], suivi du demi-cercle de rayon"au-dessus de l"axe réel, suivi du segment [";R], suivi du demi-cercle de rayonRau-dessus de l"axe réel. (g)Montrer que :

J=2aloga:

Indication:Calculer d"abordResg(ia)en utilisant la valeur delogi, que l"on déterminera auparavant.

1.Examen 1 3Exercice 3.Dans un ouvert connexe non vide

C, pour une courbeC1pm(continue)

: [0;1]! fermée (0) = (1)que l"on identifie [0;1]à son image, on définit l"indicede tout pointw2Cn par rapport à par l"intégrale : Ind (w) :=12iZ dzzw: (a)Avec :=C, en utilisant deux couleurs différentes, tracer une courbe qui tourne2 fois autour de0, puis une autre qui tourne+3fois. (b)On introduit, pourt2[0;1], la fonction : (t) :=exp Zt 0 0(s) (s)wds

Calculer la dérivée det7!(t)

(t)wsur[0;1]. (c)Montrer que : (t) = (t)w (0)w(8t2[0;1]): (d)Montrer que : Ind (w)2Z: (e)On suppose dorénavant que l"ouvert connexe est de plussimplement connexe.

D"après le cours, siw2

est un point de référence fixé, cela implique que deux courbes

0: [0;1]!

et

1: [0;1]!

quelconquesC1pm(continues) allant de w=

0(0) =

1(0)à un autre point quelconque

0(1) =

1(1) =z2

sont toujours homotopesà travers une famille continuet7! s(t) s2[0;1]de courbesC1pmtoutes conte- nues dans

Justifier alors que toute fonction holomorpheg2O(

)possède uneprimitiveG2 O( )avecG0=g. (f)Justifier que pour toute courbeC1pmfermée , on a : 0 =Z g(z)dz(8g2O(

Maintenant, soit un ouvert connexe non vide!

, soitw2!et soit un rayon R>0tel queDR(w)!. Toute fonction holomorphef2O!nfwgen-dehors dewse développe alors en série de Laurent : f(z) =1X n=1a nzwn; normalement convergente sur les compacts deDR(w), avec des coefficients donnés par la formule : a n:=12iZ C r(w)f()(w)n+1d(n2Z); indépendamment du choix d"un rayon intermédiaire0< r 2Cr(w)f()rn:

4 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(h)Montrer que :

limsup

1 njnjpjanj6r:

(i)Montrer que le rayon de convergence de la série entière : 1X n=1a nZn vaut1. (j)Montrer que la partie singulière : h(z) :=1X n=1a nzwn définit une fonction holomorphe dansCnfwg. (k)Montrer l"holomorphie dans!de la fonction : g:=fh2O(!): (l)On suppose maintenant que l"ouvert connexe et simplement connexe

Ccontient

un nombre finiL>1de points-singularités distinctsw1;:::;wL2 , et on considère une fonction holomorphe : f2O fw1;:::;wLg en-dehors de ces points, ainsi qu"une courbeC1pmfermée : w1;:::;wL: Enfin, on introduit les parties singulières defdans certains petits voisinages ouverts!`3 w h `(z) :=1X n=1a `;nzw` n(16`6L):

Montrer l"holomorphie partout dans

de la fonction : g(z) :=f(z)h1(z) hL(z)2O( (m)Établir laformule des résidus homologique : 12iZ f(z)dz=Ind (w1)Resf(w1) ++Ind (wL)Resf(wL):

Exercice 4.

[Sans indications] (a) Pour2R+, montrer que :Z1 1e

2ix(1 +x2)2dx=2

1 + 2 e2:

(b)Montrer que :Z1

1dx(1 +x2)n+1=135(2n1)246(2n):

2.Corrigé de l"examen 1 52. Corrigé de l"examen 1

Exercice 1.

(a) Voici une figure élémentaire.! z 0D r(z0) C "(z0)z 1 (b)Avec0< "612 jz1z0j, pour tout2C"(z0), à savoir pour tout2Cavec jz0j=", on a en effet grâce àjabj>jaj jbj:z1=z1z0(z0) >jz1z0j jz0j =jz1z0j " >jz1z0j 12 jz1z0j 12 jz1z0j: (c)Quand0< "612 jz1z0jtend vers0, on majore en utilisant l"hypothèse quejfj6M surC"(z0), indépendamment de" >0: Z C "(z0)f()z1d6max

2C"(z0)1jz1jmax

2C"(z0)f()Z

2 0 "ieid 6

2jz1z0jM"2!"!00:

(d)Les deux points :

1:=z0+rz1z0jz1z0j;

0:=z0rz1z0jz1z0

sont situés sur le diamètre du cercleCr(z0)qui contient le segment[z0;z1]. Le contour;" demandé se représente alors comme suit.

6 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, Francez

1 z 0 0 1 ;"C "(z0)C "(z1) (e)Comme la fonction7!f()est holomorphe dans!nfz0g, la fonction7!f()z1est holomorphe dans un voisinage ouvert de;"[Int;", donc le théorème de Jordan-Cauchy offre effectivement l"annulation : 0 =Z ;"f()z1d; cela, pour toutz12Dr(z0)fz0gfixé. (f)En faisant tendre!0, les intégrales sur les bords des deux tunnels, effectuées sur

des paires de segments orientés de manière opposée, s"annihilent, et il ne reste plus, à la

limite, que trois intégrales : 0 = 12iZ C r(z0)f()z1d12iZ C "(z1)f()z112iZ C "(z0)f()z1d: s"évanouit, tandis que la deuxième, sur un cercle centré enz1qui s"effondre surz1, tend, comme le cours l"a plusieurs fois démontré, versf(z1), d"où la formule demandée :quotesdbs_dbs4.pdfusesText_7
[PDF] analyse complexe exo7 PDF Cours,Exercices ,Examens

[PDF] analyse complexe master 1 PDF Cours,Exercices ,Examens

[PDF] analyse comptable des opérations de l'entreprise pdf PDF Cours,Exercices ,Examens

[PDF] Analyse compte de résultat, Methode des SIG Bac +2 Comptabilité

[PDF] Analyse courbes en histoire!!! 1ère Histoire

[PDF] analyse cours PDF Cours,Exercices ,Examens

[PDF] analyse cout efficacité exemple PDF Cours,Exercices ,Examens

[PDF] analyse cout-efficacité en santé PDF Cours,Exercices ,Examens

[PDF] Analyse critique d'un exercice 2nde Mathématiques

[PDF] analyse critique d'un exercice ( maths dm ) 2nde Mathématiques

[PDF] Analyse critique d'un extrait de texte Bac +5 Philosophie

[PDF] analyse critique d'un article PDF Cours,Exercices ,Examens

[PDF] analyse critique d'un projet PDF Cours,Exercices ,Examens

[PDF] analyse critique dans un exercice 2nde Mathématiques

[PDF] Analyse critique de 2 documents Terminale Histoire