[PDF] Probabilités et variables aléatoires





Previous PDF Next PDF



PROBABILITÉS CONDITIONNELLES ET INDÉPENDANCE

PROBABILITÉS CONDITIONNELLES. ET INDÉPENDANCE. Tout le cours en vidéo : https://youtu.be/5oBnmZVrOXE. I. Probabilité conditionnelle.



Probabilités conditionnelles

TD Probabilités feuille n? 4. Probabilités conditionnelles. Exercice 1 Dans une usine on utilise conjointement deux machines M1 et M2 pour fabriquer des 



Probabilités conditionnelles

probabilités. • à calculer la probabilité d'un événement connaissant ses probabilités conditionnelles relatives à une partition de l'univers.



Probabilité conditionnelle

= 55.6%. Correction de l'exercice 7 ?. 1. Probabilité conditionnelle : si un individu a les yeux bruns d'avoir les cheveux blonds.



Chapitre 2 Probabilités conditionnelles et indépendance d

La notion de probabilité conditionnelle permet de formuler rigoureusement une la définition mathématique des probabilités conditionnelles pour calculer ...



Première générale - Probabilités conditionnelles - Exercices - Devoirs

Probabilités conditionnelles et indépendance – Exercices - Devoirs. Exercice 1 corrigé disponible. Exercice 2 corrigé disponible.



Terminale S - Probabilités conditionnelles et indépendance

Probabilités conditionnelles et indépendance. I) Conditionnement par un événement. 1) Probabilité de B sachant A a) Définition.



Probabilités et variables aléatoires

babilités conditionnelles et de la notion d'indépendance en proba- bilités. Après avoir défini la notion de variable aléatoire celles de.



Exercices et problèmes de statistique et probabilités

1.2 Axiomes du calcul des probabilités . On définit la probabilité conditionnelle de l'événement A sachant que l'événement B est réalisé.



probabilites conditionnelles

probabilités conditionnelles. Table des matières. 1 probabilités conditionnelle ii. calculer la probabilité qu'une personne soit tombée malade sachant ...



PROBABILITÉS CONDITIONNELLES - maths et tiques

La probabilité que le patient ait pris le médicament A sachant qu’il est guéri se note P G(A) et est égale à P G(A)= 383 674 ?057=57 La probabilité que le patient soit guéri sachant qu’il a pris le médicament B se note P B(G) et est égale à P B(G)= 291 345 ?084=84



Travail d’Initiative Personnel Encadré : Chaines de Markov

On appelle probabilité conditionnelle de ! sachant " la probabilité que l'événement # se réalise sachant que l'événement $ est réalisé On la note : !(#) Remarque : On rappelle que comme pour les probabilités simples on a : 0? !(#)?1 Méthode : Calculer une probabilité conditionnelle à l’aide d’un tableau



PROBABILITES CONDITIONNELLES ET THEOREME DE BAYES - Inserm

La probabilité conditionnelle est donc bien comprise entre 0 et 1 ; de plus elle satisfait à Pr{B1 ?B2 / A}=Pr{B1 / A}+Pr{B2 / A}?Pr{B1 ?B2 / A} La probabilité conditionnelle a donc bien les propriétés d’une probabilité On peut définir de façon symétrique Pr{A/ B} = Pr{A et B} Pr{B}



PROBABILITÉS CONDITIONNELLE

• Dans un arbre pondéré la probabilité d'un événement correspondant à un chemin est le produit des probabilités inscrites sur chaque branche de ce chemin • La probabilité d'un événement associé à plusieurs trajets complets est la somme des probabilités de ces trajets • La somme des probabilités des branches partant d'un



Chapitre 2 : Probabilités conditionnelles - LeWebPédagogique

Application 1 : Calculer une probabilité conditionnelle Dans une population donnée 84 des personnes possèdent un téléphone portable et 75 des personnes possèdent un ordinateur De plus 60 des personnes de cette population déclarent posséder les deux On rencontre par hasard une personne de cette population



Searches related to probabilité conditionnelle pdf PDF

Au premier embranchement les poids au dessus des branches c orrespondent à la probabilité des évènements B et B Nousnoteronsaupassagequelasommedecespoidsvaut1(comme à chaque embranchement A partir du deuxième embranchement les probabilités sont des probabilités conditionnelles En particulier celles-ci indiquent le chemin suivi

Comment définir la probabilité conditionnelle?

Probabilité conditionnelle Soit , A, , un espace de probabilité et un événement de probabilité strictement positif. La probabilité conditionnelle de sachant (ou par rapport à ) est définie conditionnellement par la formule : « Probabilité de » ou (« probabilité de est réalisé»).

Comment calculer la babilité conditionnelle d’un événement ?

• Pour deux événements A et B tels que Card (A) ? 0, la pro- 7 babilité conditionnelle de B sachant A, notée PA (B), est la Exemple 2. On tire à présent une seconde boule sans remettre probabilité que l’événement B soit réalisé sachant que A est Card (B ? A) la première dans l’urne. Soit l’événement B : « le numéro de réalisé.

Comment calculer la probabilité d'un système ?

On rappelle que E ( X ) = lim ? x f ( x ) dx . b?+` 0 2. En déduire la probabilité que le système (S) fonc- a. On pose F ( x ) = (? x ? 1) e . ?x tionne au-delà de 50 semaines. Montrer que F est une primitive de x ? xf (x). 3. Soit t un nombre positif. b Quelle est, en fonction de t, la probabilité que le sys- b.

Comment calculer la probabilité d’obtenir un as ?

Je commence par décrire chacun des événements de la forme {X?=?k}. Comment continuer ? L’événement {X = 8} correspond au tirage d’un as. Décrire de la même manière les deux autres événements de la forme {X = k}. Je sais que la probabilité P (X = 8) est la probabilité d’obtenir un as.

Probabilités et variables aléatoires

Probabilités et variables aléatoires

Résumé

Ce chapitre introduit les concepts essentielles des modèles proba- bilistes afin d"aborder l"inférence statistique : définition d"un évé- nement aléatoire, des probabilités discrètes ou continues, des pro- babilités conditionnelles et de la notion d"indépendance en proba- bilités. Après avoir défini la notion de variable aléatoire, celles de lois les plus utilisées sont décrites : discrètes de Bernoulli; bino- miales, géométrique, de Poisson; continues uniforme, exponentielle, Gamma, normale, du chi-deux, de Student et de Fisher. Espérance et variance d"une variable aléatoires sont définies, avant de signaler les deux théorèmes importants : loi des grands nombre et théorème de central limite.

Retour au

plan du cour s

1 Introduction

Dans des domaines très différents comme les domaines scientifique, socio- logique ou médical, on s"intéresse à de nombreux phénomènes dans lesquels apparaît l"effet du hasard. Ces phénomènes sont caractérisés par le fait que les résultats des observations varient d"une expérience à l"autre. Une expérience est appelée "aléatoire" s"il est impossible de prévoir à l"avance son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats différents : succession d"appels à un standard téléphonique non surchar gé; observ ationde la durée de vie d"un indi viduanon ymedans une po pula- tion; observ ationde la durée de fonctionnement sans panne d"appareil ; jeu de pile ou f ace.

Voici d"autres exemples de domaines d"applications des probabilités.FiabilitéOn considère un système formé par plusieurs composants. On s"in-

téresse à la fiabilité du système : on va chercher à calculer la probabilité que le système fonctionne encore à un instant donné. Il faut pour cela connaître la probabilité que chacun des composants fonctionne à cet instant et tenir compte du fait que les composants ne fonctionnent peut-être pas indépendamment les uns des autres. Fatigue des matériauxLes données de fatigue des matériaux sont très dis- persées. On fait alors appel à des modélisations probabilistes et à des méthodes statistiques afin, par exemple, de construire des intervalles de confiance pour le nombre moyen de cycles jusqu"à la rupture. TélécommunicationsEn télécommunications, on doit souvent tenir compte du "bruit" dans les systèmes. Par exemple, supposons qu"un système émet soit un0, soit un1, et qu"il y a un risquepque le chiffre émis soit mal reçu. Il est alors intéressant de calculer la probabilité qu"un0ait été émis, sachant qu"un

0 a été reçu, ou encore la probabilité qu"il y ait une erreur de transmission.

2 Notion de probabilité

2.1 événement

DÉFINITION1. - On appelle univers associé à une expérience aléatoire l"en- semble de tous les résultats possibles de cette expérience.

Le choix de l"ensemble

comporte une part d"arbitraire. Il dépend de l"idée que l"on a, a priori, sur les résultats de l"expérience aléatoire. Donnons quelques exemples : 1.

On lance une pièce de monnaie. Pour l"ensemble

, on peut choisir soit =fpile, faceg, soit =fpile, face, trancheg: 2. On s"intéresse à l"état de fonctionnement d"un système. Dans ce cas f0;1gavec la convention0si le système est en panne et1s"il fonctionne. 3. Le résultat de l"e xpériencealéatoire est le nombre de tirages nécessaires dans un jeu de pile ou face jusqu"à l"obtention du premier "pile". Dans ce cas, =f1;2;3;g=N:1

Probabilités et variables aléatoires

4. On considère la succession des appels à un standard téléphonique non surchargé et l"on étudie la répartition des instants où le standard reçoit un appel, à partir d"un instant choisi comme origine (on admet que deux appels ne peuvent se produire rigoureusement au même instant et que le phénomène est limité dans le temps). Une réalisation de cet événement est une suite croissante de nombres réels positifstioùtidésigne l"instant d"enregistrement du i-ème appel : =f0< t1< t2<< tn< t n+1Nous constatons que peut être fini (exemples 1 et 2), dénombrable (exemples

3 et 5) ou non dénombrable (exemples 4 et 5). Lorsque

est fini ou dénom- brable, on parle d"univers discret. Sinon on parle d"univers continu. DÉFINITION2. - Etant donnée une expérience aléatoire, un événement aléa- toire est une partie de l"ensemble des résultats possibles de l"expérience, c"est donc un sous-ensembleAde l"univers . On dit que l"événementAest réalisé si le résultat!de l"expérience appartient àA. On sait que l"événementAest réalisé seulement une fois l"expérience aléatoire réalisée.

Exemples :

Si l"on s"intéresse à l"événement sui vant: "on a obtenu un chif frepair lors d"un lancer d"un dé à 6 faces", on introduitA=f2;4;6g, qui est un sous-ensemble de =f1;2;3;4;5;6g. Si l"on s"intéresse à l"événement sui vant: "la durée de vie du composant est supérieure ou égale à 1000 heures",A= [1000;+1[est un sous- ensemble de =R+. L"ensemble;est appelé l"événement impossible et est appelé l"événement certain.

2.2 Opérations sur les événements

Les événements aléatoires étant des ensembles, introduisons les opérations

ensemblistes classiques de la théorie des ensembles.DÉFINITION3. - On appelle événement contraire deA, notéAC, le complé-

mentaire deAdans A C=f!2 :! =2Ag: L"événement contraireACest réalisé si et seulement siAn"est pas réalisé. Exemple :SiAest l"événement "la durée de vie du composant est supérieure ou égale à 1000 heures" :A= [1000;+1[, l"événement contraire est l"événe- ment "la durée de vie du composant est strictement inférieure à 1000 heures" : A

C= [0;1000[.

DÉFINITION4. - SoientAetBdeux événements d"un univers L "événement" AetB" est celui qui est réalisé siAetBsont réalisés.

C"est l"intersection

A\B=f!2

:!2Aet!2Bg: L "événement" AouB" est celui qui est réalisé si l"un des deux est réalisé ou si les deux sont réalisés. C"est l"union

A[B=f!2

:!2Aou!2Bg: L "inclusionABsignifie que l"événementAne peut être réalisé sans queBle soit. DÉFINITION5. - Deux événementsAetBsont dits incompatibles si la réa- lisation de l"un implique la non-réalisation de l"autre.

Dans l"espace

, deux événements incompatibles sont représentés par deux parties disjointes. SiA\B=;, alorsAetBsont incompatibles. Il est clair, par exemple queAetACsont incompatibles.

2.3 Probabilité

Définition

DÉFINITION6. - Soit

un univers associé à une expérience aléatoire et soit

Al"ensemble des parties de

. Une probabilitéPsur l"espace( ;A)est une application deAdans[0;1]telle que2

Probabilités et variables aléatoires

1.P( ) = 1: 2. Si (An)n1est une famille d"événements deA2 à 2 incompatibles, P +1[n=1An =1X n=1P(An):

Le triplet(

;A;P)est appelé espace de probabilité. On peut déduire de la définition précédente un certain nombre de propriétés. PROPOSITION7. - SoientAetBdeux événements aléatoires.

1.P(;) = 0.

2.P

N[n=1An

NP n=1P(An): 3.

Si A1;:::;ANsont deux-à-deux incompatibles,

P

N[n=1An

=NX n=1P(An):

4.P(AC) = 1P(A).

5.

Si AB,P(A)P(B).

6.P(A[B) =P(A) +P(B)P(A\B):

7. Si est fini ou dénombrable, alors pour tout événementA,

P(A) =X

!2AP(f!g):

Exemple : Probabilité uniforme

Soit un ensemble fini : =f!1;:::;!Ng. Pour touti2 f1;2;:::;Ng, on poseP(f!ig) =1N :Alors, pour toute partieAde , on a

P(A) =X

!2AP(f!g) =Card(A)N =Card(A)Card( ):Dans le cas du lancer de dé à 6 faces, pour tout!2 f1;2;:::;6g,P(f!g) = 1=6. Si on note l"événement "on a obtenu un chiffre pair" parA=f2;4;6g, alors

P(A) = 3=6 = 1=2:

Remarques :Pour un problème donné, il y a souvent plusieurs modélisations possibles, c"est-à-dire que le choix de l"espace de probabilité n"est pas unique. Remarque :Choisir un élément au hasard signifie que les divers choix pos- sibles sont équiprobables, donc que l"ensemble est muni de la probabilité uniforme. Dans ce cas, tous les calculs sont simples et se ramènent souvent à des calculs d"analyse combinatoire.

2.4 Probabilités conditionnelles

Dans le chapitre précédent, on a parlé de la probabilité d"un événement sans tenir compte de la réalisation d"autres événements. En pratique, on peut considérer plusieurs événements, certains pouvant avoir une influence sur la réalisation d"autres événements. Exemple :On lance deux dés. Soient les événementsA=fla somme est

11getB=fle lancer du 1er dé donne6g. Il est clair que la réalisation deB

influe sur la réalisation deA. Supposons que l"on s"intéresse à la réalisation d"un événementA, tout en sachant qu"un événementBest réalisé. SiAetBsont incompatibles, alors la question est réglée :Ane se réalise pas. Mais siA\B6=;, il est possible queAse réalise. Cependant, l"espace des événements possibles n"est plus tout entier, mais il est restreint àB. En fait, seule nous intéresse la réalisation deAà l"intérieur deB, c"est-à-direA\Bpar rapport àB. Ceci justifie la définition suivante.

DÉFINITION8. - Soit(

;A;P)un espace de probabilité. SoientAetBdeux événements aléatoires tels queP(B)6= 0. On appelle probabilité condition- nelle deAsachantBla quantité

P(AjB) =P(A\B)P(B):3

Probabilités et variables aléatoires

Remarque :On a les égalités suivantes :

SiP(B)>0;P(A\B) =P(AjB)P(B):

SiP(A)>0;P(A\B) =P(BjA)P(A):

PROPOSITION9. -(formule des probabilités totales)Soit(Ai)i2Iune fa- mille d"événements aléatoires formant une partition de , c"est-à-dire tels que : -[i2IAi= -Ai\Aj=;pour touti6=j. On suppose de plus queP(Ai)6= 0pour touti2I. Alors

P(A) =X

i2IP(AjAi)P(Ai): PROPOSITION10. -(formule de Bayes)Sous les mêmes hypothèses que la proposition précédente, on a :

P(AijA) =P(AjAi)P(Ai)P

i2IP(AjAi)P(Ai): La formule de Bayes (publiée après sa mort en 1763) présente un grand intérêt car elle permet de modifier notre connaissance des probabilités en fonction d"informations nouvelles. Cette formule joue donc un rôle très important dans la statistique bayésienne.

2.5 Indépendance

DÉFINITION11. - Soit(

;A;P)un espace de probabilité, et soientAetB deux événements aléatoires. On dit queAetBsont indépendants si

P(A\B) =P(A)P(B):

Remarque :AetBsont indépendants si et seulement siP(AjB) =P(A): pas modifiée par une information concernant la réalisation de l"événementB.

PROPOSITION12. - SiAetBsont deux événements indépendants alors :-ACetBsont également indépendants;

-AetBCsont également indépendants; -ACetBCsont également indépendants. Nous allons maintenant définir l"indépendance de plus de 2 événements aléa- toires.

DÉFINITION13. - Soit(

;A;P)un espace de probabilité. Pourn2, soientA1;A2;:::An, des événements aléatoires. Ces événement ssont deux à deux indépendants si pour tout couple (i;j) aveci6=jon a

P(Ai\Aj) =P(Ai)P(Aj):

Ces événements s ontindépendants (dans leur ensemble) si pour tout k2 f2;3;:::;nget tout choix d"indices distinctsi1;:::;ik, on a

P(Ai1\Ai2\:::\Aik) =P(Ai1)P(Ai2):::P(Aik):

3 Notion de variable aléatoire

3.1 Introduction

Dans de nombreuses expériences aléatoires, on n"est pas intéressé direc- tement par le résultat de l"expérience, mais par une certaine fonction de ce résultat. Considérons par exemple l"expérience qui consiste à observer, pour chacune desnpièces produites par une machine, si la pièce est défectueuse ou non. Nous attribuerons la valeur1à une pièce défectueuse et la valeur0à une pièce en bon état. L"univers associé à cette expérience est =f0;1gn: Ce qui intéresse le fabricant est la proportion de pièces défectueuses pro- duites par la machine. Introduisons donc une fonction de dansRqui à tout != (!1;!2;:::;!n)de associe le nombre

X(!) =nX

i=1! in qui correspond à la proportion de pièces défectueuses associée à l"observation de!. Une telle fonctionXdéfinie sur et à valeurs dansRs"appelle une variable aléatoire réelle. 4

Probabilités et variables aléatoires

3.2 Définitions

Variable aléatoire réelle

DÉFINITION14. - Etant donné un univers

, une variable aléatoire réelle (v.a.r.) est une application de dansR: X:!2

7!X(!)2R:

quotesdbs_dbs41.pdfusesText_41
[PDF] introduction ? l'histoire de notre temps tome 3

[PDF] contexte historique du 20ème siècle

[PDF] histoire du xxe siècle berstein et milza

[PDF] histoire des idees et des arts 20eme siecle pdf

[PDF] les périodes de l'histoire pdf

[PDF] évaluation les 5 périodes de lhistoire

[PDF] qu'est - ce qu une frise chronologique ce2

[PDF] frise chronologique cm2 ? compléter

[PDF] evenement incompatible

[PDF] expérience aléatoire maths

[PDF] evenements independants

[PDF] événements incompatibles

[PDF] evenement compatible

[PDF] demonstration evenement independant

[PDF] joint aquasolo