[PDF] Systematic methodology for generation and design of hybrid vehicle





Previous PDF Next PDF



PUNCH Powerglide Strasbourg spécialisé dans la conception et la

PUNCH Powerglide spécialisé dans la conception et fabrication de boîtes de vitesses automatiques recherche : Un apprenti Sécurité (H/F).



NOUVELLE MINI.

01-Nov-2014 (2) Exemple de loyer pour une MINI Oner D 95 ch en Location Longue ... Boîte de vitesse automatique sport avec surpiqûres rouges.



Systematic methodology for generation and design of hybrid vehicle

10-Jun-2020 Les éléments de boites de vitesse (embrayages synchroniseurs) sont représentés avec un niveau de détails approprié pour générer de nouvelles.



English?french Dictionary

a: quelqu'un dans



La boîte M à double embrayage avec Drivelogic. Table des matières.

basse vitesse ; activation automatique du verrouillage parking après la à présenter une boîte à double embrayage à sept rapports conçue pour des.



TRANSMISSION

PRESENTATION : BOITE DE VITESSES AUTOMATIQUE ZF 4HP20. 1. 1 - Généralités. 2 - Particularités Un fonctionnement particulier de la boîte de vitesses.



Manuel Utilisateur - Aixam

Après chaque débranchement de la batterie du véhicule il est nécessaire de réinitialiser la commande automatique des vitres et l'anti pincement ; pour cela 



La BMW ActiveHybrid 7. Table des matières.

49 secondes pour s'élancer de zéro à 100 km/h



Renault Trucks T Gamme Longue Distance 2016

une vitesse commerciale élevée. BOÎTE DE. VITESSES. ROBOTISÉE. OPTIDRIVER ARRÊT MOTEUR AUTOMATIQUE pour ... augmentation de la vitesse de 8 km/h maxi.



??? Vol.11 - non- destructive testing nuclear I technology

de la pompe ainsi que l'affichage des vitesses sont réunis sur un pupitre à la mise au point d'une machine semi-automatique de trempe au défilé pour ...



Fonctionnement d'une boîte de vitesses automatique

Fonctionnement d'une boîte de vitesses automatique A quoi sert une boîte de vitesses automatique ? Une boîte de vitesses automatique sert à transmettre le couple moteur aux roues d’un véhicule en adaptant les caractéristiques du moteur aux conditions de circulation et à la commande du conducteur

0PH6HPDLO%HWW\3URIHVVHXUHGHV8QLYHUVLWpV8QLYHUVLWpGH/LOOH ([DPLQDWULFH

07ULJXL5RFKGL'LUHFWHXUGH5HFKHUFKH,)677$5 'LUHFWHXUGHWKqVH

SYSTEMATIC METHODOLOGY

FOR GENERATION AND DESIGN OF

HYBRID VEHICLE POWERTRAINS

36$DQG,)677$5

*URXSH36$DQGZDVKRVWHGRIWKHWLPHLQ,)677$5

1.1.1The transport sector in motion 18

1.1.2The energy and environment preoccupations 18

1.2.1Vehicle powertrains: Conventional vs Hybrid vs Electric 27

1.2.2.Different levels of hybridization 29

1.2.3.Different architectures 31

1.2.4.Introduction to the design problem of (P)HEV 35

2.1.1The industrial need 38

2.1.2The system design problem in its optimization context and its spread on multiple levels 40

2.2.1. Methods used for the control optimization 43

2.2.2. Methods used for the design optimization 47

2.2.3.Coordination approaches between the two levels: sequential, alternating, nested, simultaneous 49

2.2.4. Exploration of the architecture level: enumeration, automatic generation, filtering 51

3.1.1. Representations found in the literature 58

3.1.2. The proposed representation 60

3.1.3. The 'synchro' unit in details 61

3.1.4. Gears placement in the representation 63

3.2.1. Problem variables and their domain 67

3.2.2. Problem constraints 69

3.2.3. Problem implementation 73

3.3.1. Problem solving 74

3.3.2. Generated graphs 76

3.4.1. 0ABC Table 77

3.4.2. State graphs 79

3.4.3. Modes Table 81

3.4.4. Modes Table + 82

4.2.1.Powertrain modelling 94

4.2.2.General model for all the generated architectures 97

4.3.1Upper level components technology & sizing optimization 105

4.3.2Lower level control optimization 109

5.5.1.Redundancy filtering 120

5.5.2.Modes filtering 121

5.5.3.Filtering based on the number of paths from a component to the wheels 123

5.7.1.Two added architectures 130

5.7.2.Choice of components 132

5.7.3.Performance values 135

5.7.4.DP parameters 135

5.7.5.NSGA parameters 136

Abstract

1.1.1The transport sector in motion

1.1.2The energy and environment preoccupations

1.2.1Vehicle powertrains: Conventional vs Hybrid vs Electric

1.2.2.Different levels of hybridization

1.2.3.Different architectures

1.2.4.Introduction to the design problem of (P)HEV

Conclusion

1.1 CONTEXT

a) The actual situation 7KH&2 &2 WKH&2

Figure 1: CO

2 emissions, data from IEA International Energy Agency 2018

Figure 2: Sectoral disaggregation of 2017 global CO

2 emissions, data from IEA International

Energy Agency 2018

WKHFLWLHVFDVHRI)UDQFHLQ)LJXUH

Figure 3: Percentage of pollutants emitted by the transport sector, France 2017 b) The evolution in the emission standards and the legislations ,QDQHIIRUWWRGHFUHDVHWKHJOREDO&2

HPLVVLRQVDQGHQHUJ\XVDJHOHJLVODWLRQVDQG

DYHUDJH&2

Figure 4: CAFE standards for CO2 emissions

Figure 5: Evolution of the pollutants limits for diesel vehicles in g/km, PM in mg/km

DOUHDG\LQSODFHLQ(XURSHDUHVKRZLQ)LJXUH

Figure 6: LEZ, ADEME 2017

Figure 7: Grenoble-Alpes metropole action plan

Table 1: Example of countries bans

,QGLD(QGVDOHVRISHWURODQGGLHVHOFDUV>@

8QLWHG

WKHEDQGRHVQRWLQFOXGHK\EULGV

a) The evolution in the strategies and the technology choices of the automobile manufacturers Table 2: Manufacturers electrification and hybridization plans %(9PRGHOVWREHOXQFKHGIURPWR

3+(9PRGHOVWREHOXQFKHGIURPWR

7KHJURXSZLOOEHHOHFWULILHGLQ>@PHDQLQJ

WKDWDOOFDUVZLOODWOHDVWEHHTXLSSHG

ZLWKOLJKWK\EULGL]DWLRQ

90LOG+(9PRGHOVWREHOXQFKHGVWDUWLQJ

3URGXFWLRQRI

H'&7\HDUHOHFWULILHGGXDOFOXWFK

PRGHOV

5HQDXOW

1LVVDQ

0LWVXELVKLDOOLDQFH

QHZ%(9PRGHOVWREHOXQFKHGE\

%(9ZLOOFRYHUDOOPDLQVHJPHQWVE\LQ-DSDQ86$ &KLQDDQG(XURSHPDUNHWV +(9DQG3+(9PRGHOVIRU&OLR&DSWXUDQG0HJDQH(

7(&+WREHODXQFKHGLQ

9:*URXS

b) The evolution in hybrids and electrics market shares

Figure 8: BEV and PHEV deployment

Figure 9: BCG forecasts in January 2020,

Volume(millions) is the yearly production volume in the world; Electrification = xEV = BEV + PHEV + HEV + MHEV ; TCO = total cost of ownership including purchase price (battery price included), maintenance cost and fuel/electricity cost 1.2 H

YBRIDIZATION AND ELECTRIFICATION

Figure 10: Comparison between conventional, electric and hybrid powertrains

Figure 11: Different levels of hybridization

Figure 12: The different existing hybrid architectures

Figure 13: Series architecture

Figure 14: Mechanical connection in the different parallel architectures

Figure 15: THS power-split architecture

Figure 16: A simple series-parallel architecture

Figure 17: The design problem of (P)HEV that engineers need to solve

Abstract

2.1.1The industrial need

2.1.2The system design problem in its optimization context and its spread on multiple levels

2.2.1. Methods used for the control optimization

2.2.2. Methods used for the design optimization

2.2.3.Coordination approaches between the two levels: sequential, alternating, nested, simultaneous

2.2.4. Exploration of the architecture level: enumeration, automatic generation, filtering

Conclusion

2.1. (P)HEV DESIGN PROBLEM

Figure 18: The V cycle for vehicle design projects

Figure 19: (P)HEV design problem

Figure 20: (P)HEV powertrain design space

o o o o o o value value value o o 2.2.

STATE OF THE ART

Figure 21: Traditionally

Figure 22: Methods used for the control optimization

Figure 23: The main existing EMS

If wheel demand power (t) > threshold value f(SOC),

Engine_state (t) = ON and P_engine (t) = value;

Else,

Engine_state(t) = OFF;

Kvo]v ^W D^ DW

K((o]v

W WDW K Figure 24: Methods used for the design optimization Figure 25: Categorization of the design optimization methods ^YW K W^K /Zd Figure 26: Coordination approaches between the levels Table 3: Examples of optimization methodology on level (2) and (3) FACE* : Fully-Analytic energy Consumption Estimation (6 &RQWURO'3303 *5$% (&2 '33($56 &RRUGLQDWLRQ 2.3.

OVERVIEW OF THE PROPOSED METHODOLOGY

what we havewhat we want' what we have' what we want'

Figure 27: The proposed methodology

Figure 28: The covered area of the design space before and after the PhD

Abstract

3.1.1. Representations found in the literature

3.1.2. The proposed representation

3.1.3. The 'synchro' unit in details

3.1.4. Gears placement in the representation

3.2.1. Problem variables and their domain

3.2.2. Problem constraints

3.2.3. Problem implementation

3.3.1. Problem solving

3.3.2. Generated graphs

3.4.1. 0ABC Table

3.4.2. State graphs

3.4.3. Modes Table

3.4.4. Modes Table +

Conclusion

3.1. GRAPHICAL REPRESENTATION FOR HYBRID ARCHITECTURES

Table 4: Library of nodes used in

Figure 29: The graph of a 5-speed manual gearbox powertrain with the representation in Figure 30: The graph of a 5-speed manual gearbox powertrain with the representation in , missing the clutch.

Figure 31: The proposed representation

Figure 32: Comparison between the proposed and other representations

Figure 33: 5-speed gearbox example

Figure 34: The 'synchro' unit

Figure 35: Synchronizer 1 shaft and 2 shafts cases

Figure 36: The 3 positions of the synchronizer

Figure 37: Gears are attributes not shown in the representation, the green arrow show where a gear attribute is present

Figure 38: Library of components in

3.2. CONSTRAINT SATISFACTION PROBLEM

Figure 39: Adjacency matrix of the powertrain including all the defined components

3UREOHPFRQVWUDLQWV

$Q\ VROXWLRQ WR WKLV &63 SUREOHP VKRXOG UHVSHFW VRPH FRQVWUDLQWV UHJDUGLQJ WKH FRPSRQHQWV FRQQHFWLRQ PHFKDQLFDO IHDVLELOLW\ SRZHUWUDLQ IXQFWLRQDOLW\ DQG WKH QRQ

UHSHDWDELOLW\RIWKHFRPSRQHQWV

Figure 40: The adjacency matrix after the addition of C000 o Figure 41: The adjacency matrix after the addition of C001a o Figure 42: The adjacency matrix after the addition of C001b o Figure 43: The adjacency matrix after the addition of C001c Figure 44: Minimum and maximum number of connections per node

Figure 45: Summary of the problem constraints

3.3.

AUTOMATIC GENERATION OF THE ARCHITECTURES

Figure 46: Techniques to solve CSP

Figure 47: Comparison between Branch and Bound (BB) and Constraint Programming (CP) Figure 48: Example on the resolution of the problem, case Eolab1 components Figure 49: Example of generated graphs, case Eolab1 components 3.4.

AUTOMATIC FILTERING AND ANALYSIS

Figure 50: Example on the redundancy

Figure 51: Maximum length of a 1-stage connection

Figure 52: 0ABC table of the 4 graphs shown in Figure 50

EHWZHHQWKHRWKHUSRZHUWUDLQFRPSRQHQWV

HQJLQHLVKRZHYHUFRQQHFWHGWR0*

HQJLQHLVKRZHYHUFRQQHFWHGWR0*V

Figure 53: State Graphs generation and modes detection Figure 54: Modes table for the parent graph in Figure 53

Figure 55: Attributes assignment for the nodes

Figure 56: The used convention for ratio direction Figure 57: Example of state graphs with the added information to be used in Modes Table + Figure 58: Modes Table + describing the efficiency and ratio of the power flows in each mode Figure 59: Details of the information found in Modes Table + Figure 60: Overview of the works done in the architecture level

Abstract

4.2.1.Powertrain modelling

4.2.2.General model for all the generated architectures

4.3.1Upper level components technology & sizing optimization

4.3.2Lower level control optimization

Conclusion

4.1. INTRODUCTION

Figure 61: The models needed

4.2. A

SSESSMENT OF THE POWERTRAINS

Figure 62: Modelling approach used to calculate the fuel consumption

1) Driving cycle

2) Powertrain architecture

3) Powertrain components

4) Energy Management Strategy EMS

1) Literature works

Figure 63: Automatic modelling of a graph, methodology found in Figure 64: The generic transmission model and parameters determination in

2) Proposed method

Figure 65: Example on how the modes models are called inside the general hybrid model, performance function

Figure 66: The developed General Hybrid Model in this PhD

Figure 67: Examples on the mode models

Figure 68: Connection between the automatic generation of architectures and the general model

3) Difference with the commonly used models

4) Validation of the general hybrid model

Figure 69: Example on the validation of the general hybrid model, case of SPHEV1 architecture

4.3. BI-LEVEL OPTIMIZATION OF THE POWERTRAINS

Figure 70: Optimization process and function calling from the General Hybrid Model value value value o o

3&RVWLQGH[LVHTXDOWRWKHVXPPDWLRQRI

o o

Table 5: Modes specific control variables

Figure 71: The calculation of DP inside the general hybrid model

Abstract

5.5.1.Redundancy filtering

5.5.2.Modes filtering

5.5.3.Filtering based on the number of paths from a component to the wheels

5.7.1.Two added architectures

5.7.2.Choice of components

5.7.3.Performance values

5.7.4.DP parameters

5.7.5.NSGA parameters

Conclusion

5.1. THE INTEREST IN SPHEV ARCHITECTURES

Figure 72: THS power-split architecture

Figure 73: SPHEV 1 architecture

5.2. O

BJECTIVES

Figure 74: The three proposed SPHEV architectures in

5.3. STARTING COMPONENTS

Figure 75: Starting components

5.4. THE AUTOMATICALLY GENERATED ARCHITECTURES

Figure 76: Number of generated graphs

Figure 77: Four examples of generated graphs

Figure 78: An example graph

Figure 79: The corresponding 0ABC Table for the graph in Figure 78 Figure 80: The corresponding Modes Table for the graph in Figure 78 Figure 81: The corresponding Modes Table + for the graph in Figure 78

5.5. T

HE AUTOMATIC FILTERING

Figure 82: Example of a dismissed architecture

Figure 83: Example of architecture that passes the modes filtering Figure 84: Example of architectures with 1 path from the ICE to the wheels

5.6. M

OST PROMISING ARCHITECTURES

Figure 85: Architecture 1

Figure 86: Architecture 2

Figure 87: Architecture 3

quotesdbs_dbs22.pdfusesText_28
[PDF] ULTRA by

[PDF] Fiche SCUIO - Université Paris-Dauphine

[PDF] questions - Université Paris-Dauphine

[PDF] HISTOIRE DES ARTS Christian Boltanski, Personnes, 2010

[PDF] Ocho participantes del BOmm 2017 estarán en el mercado de

[PDF] bon de commande - Corsica Ferries

[PDF] BREVET D 'ÉTUDES PROFESSIONNELLES option cuisine épreuve

[PDF] Bon de commande - ECPA

[PDF] Chorus Portail Pro 2017 - Communauté Chorus Pro

[PDF] Prestations sur bon de commandes

[PDF] La bonne utilisation de l 'e-mail dans l 'entreprise - Medef

[PDF] Guide de bon usage de la messagerie électronique - Thales Group

[PDF] les aides financières individuelles aux familles - Caf

[PDF] Une aide ? votre portée - Afe

[PDF] guide de la retraite 2016 dans la fonction publique d 'état - Solidaires