[PDF] [PDF] Valeurs absolues Partie entière Inégalités - Exo7





Previous PDF Next PDF



Valeurs absolues. Partie entière. Inégalités

Exo7. Valeurs absolues. Partie entière. Inégalités Mais pour x ? [0



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

Voici le graphe de la fonction partie entière x ? E(x) : x y. 1. 0. 1 y = E(x). 2 853. E(2



Cours de mathématiques - Exo7

Un nombre est rationnel si et seulement s'il admet une écriture décimale périodique ou finie. Voici le graphe de la fonction partie entière x ? E(x) :.



Cours de mathématiques - Exo7

Dans l'algorithme précédent nous avions utilisé le logarithme décimal log@xDIHA ainsi que la partie entière floor@xA. 2.4. Écriture des nombres en base 2.



Cours de mathématiques - Exo7

Montrer cette partie de la proposition 8 : « P(?) = 0 et P (?) = 0 ?? ? est une Le polynôme E s'appelle la partie polynomiale (ou partie entière).



Cours de mathématiques - Exo7

x = x0 pour tout x0 ? 0. • la fonction partie entière E n'a pas de limite aux points x0 ? . Page 7. LIMITES ET FONCTIONS CONTINUES. 2. LIMITES. 7.



Cours de mathématiques - Exo7

la partie entière d'un réel x. 2.3. Module math. Quelques commentaires informatiques sur un module important pour nous. Les fonctions mathématiques ne sont.



Cours de mathématiques - Exo7

partie entière E(x) : plus grand entier n ? x (floor = plancher) ceil(x) plus petit entier n ? x (ceil = plafond). Il existe des fonctions spécifiques qui 



QCM DE MATHÉMATIQUES - LILLE - PARTIE 1

Sur le site Exo7 vous pouvez récupérer les fichiers sources. Explications: La partie entière s'obtient comme le quotient de la division euclidienne de P ...



Exercices de mathématiques - Exo7

Exercice 10. Soit x un réel. 1. Donner l'encadrement qui définit la partie entière E(x). 2. Soit (un)n?N? 



[PDF] Valeurs absolues Partie entière Inégalités - Exo7

Partie entière Inégalités Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur www maths-france * très facile ** facile *** difficulté 



[PDF] livre-analyse-1pdf - Exo7 - Cours de mathématiques

Voici le graphe de la fonction partie entière x ? E(x) : x y 1 0 1 y = E(x) 2 853 E(2 853) = 2 Pour la démonstration de la proposition 3 il y a 



[PDF] ficallpdf - Exo7

155 220 04 Propriétés de la sommme d'une série entière Soit A et B deux parties de E f et g leurs fonctions caractéristiques Montrer que les fonctions 



Cours et exercices de mathématiques -- Première année - Exo7

livre-algebre-1 pdf · Analyse - Cours de première année · livre-analyse-1 pdf livre-geometrie pdf Partie entière Inégalités · fic00087 pdf



[PDF] cours-exo7pdf

5) = 1 (la seule partie ayant 5 éléments est l'ensemble tout entier) Sans calculs on peut déjà remarquer les faits suivants : Proposition 11



[PDF] fic00009pdf - Exo7 - Exercices de mathématiques

Exercice 10 Soit x un réel 1 Donner l'encadrement qui définit la partie entière E(x) 2 Soit (un)n?N? 



[PDF] Séries entières - Exo7 - Exercices de mathématiques

Déterminer le rayon de convergence de la série entière proposée dans chacun des cas Mais d'autre part pour tout entier naturel non nul n an = ?n



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

rk = 1 1 ? r Page 5 SÉRIES 1 DÉFINITIONS – SÉRIE GÉOMÉTRIQUE 5 D'autre part rk = ?kei k? par la formule de Moivre Les parties réelle et imaginaire de 



[PDF] Limits et fonctions continues - Exo7 - Cours de mathématiques

x = x0 pour tout x0 ? 0 • la fonction partie entière E n'a pas de limite aux points x0 ? Page 7 LIMITES ET FONCTIONS CONTINUES 2 LIMITES 7

  • Comment résoudre la partie entière ?

    Pour résoudre une équation de la forme partie entière=nombre partie entière = nombre , il faut connaitre la définition de la partie entière d'un nombre. Voici un rappel : La partie entière d'un nombre, notée [x] , correspond à l'unique nombre entier tel que [x]?x<[x]+1 [ x ] ? x < [ x ] + 1 .
  • Comment calculer la partie entière d'un nombre ?

    En mathématiques, la fonction partie entière est la fonction définie de la manière suivante : Pour tout nombre réel x, la partie entière notée E(x) est le plus grand entier relatif inférieur ou égal à x. Par exemple : E(2,3) = 2, E(?2) = ?2 et E(?2,3) = ?3.
  • Où trouver les corrigés sur Maths PDF ?

    Maths-pdf.fr est un site web qui propose une large gamme de documents PDF gratuits et téléchargeables consacrés aux mathématiques. Le site propose des fiches de cours, des exercices, des corrigés, des annales et des livres de mathématiques pour les élèves de tous les niveaux, de l'école primaire au lycée en France.
  • L'on présente tout d'abord les propriétés des nombres complexes et l'extension aux variables complexes des fonctions élémentaires d'une variable réelle. On développe ensuite le calcul différentiel et intégral complexe de ces fonctions et on étudie les propriétés supplémentaires qui en découlent.
Exo7 Valeurs absolues. Partie entière. Inégalités * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1**I Moyennes arithmétique, géométrique et harmoniqueSoientxetydeux réels tels que 0 (moyenne arithmétique),g=pxy(moyenne géométrique) et 1h =12 (1x +1y )(moyenne harmonique). Montrer quex6h6g6m6y. qu"avec les deux opérations+et) que pourn2N,(1+1n )n<3.

Pour cela développer, puis majoreruk=Cknn

ken commençant par majorervk=uk+1u kpar12

Montrer que(a1+a2+:::+an)(1a

1+:::+1a

n)>n2(développer et penser àf(x) =x+1x j nå k=1a kbkj6nå k=1jakj:jbkj6sn k=1a2ksn k=1b2k:

(Indication. Considérer le polynômef(x) =ånk=1(ak+bkx)2, développer puis ordonner suivant les puissances

décroissantespuisutiliser, danslecasgénéral, lesconnaissancessurleseconddegré). Retrouveralorslerésultat

de l"exercice 4 inférieur ou égal à 14 1

2.Montrer que : 8(x;y)2R2;E(x)+E(y)6E(x+y).

3. Montrer que : 8(x;y)2R2;E(x)+E(y)+E(x+y)6E(2x)+E(2y). n=a0+10a1+:::+10pap;

oùpest un entier naturel et lesaisont des entiers éléments def0;:::;9g,apétant non nul. Déterminerpen

fonction den. 2. 1. Combien y a-t-il d"entiers naturels entre 1 et n? entre 1 etx? 2. Combien y a-t-il d"entiers naturels entre 0 et n? entre 0 etx? 3.

Combien y a-t-il d"entiers naturels pairs entre 0 et x? Combien y a-t-il d"entiers naturels impairs entre 0

etx? 4.

Combien y a-t-il de multiples de 3 entre 0 et x?

5. Combien l"équation x+2y=n,nentier naturel donné etxetyentiers naturels inconnus, a-t-elle de couples solutions ? 6. De combien de f açonspeut-on payer 10 euros a vecdes pièces de 10 et 20 centimes d"euros ? 7.

(***) Combien l"équation 2 x+3y=n,nentier naturel donné etxetyentiers naturels inconnus, a-t-elle

de couples solutions ? ) =E(nx)(poser la division euclidienne deE(nx)parn). (n+2E(n25 ))) =E(8n+2425 1. Montrer qu"il e xiste(an;bn)2(N)2tel que(2+p3)n=an+bnp3, puis que 3b2n=a2n1. 2. Montrer que E((2+p3)n)est un entier impair (penser à(2p3)n)). 2 ) =E(x).

Montrer quejx1+2x2+:::+nxnj6E(n24

(commencer par vérifier que pourk=2;3;:::;n, on a :(nk+1)k>n). (remarquer que six2[0;1];x26x). Correction del"exer cice1 NSoientxetydeux réels tels que 0On a déjà x=x+x2 6x+y2 =m6y+y2 =yet doncx6m6y. (on peut aussi écrire :mx=x+y2 x=yx2 >0). 2.

On a ensuite x=px:x6pxy=g6py:y=yet doncx6g6y.

3.mg=x+y2

pxy=12 ((px)22pxy+(py)2) =12 (pypx)2>0 et donc,x6g6m6y. 4.

D"après 1), la mo yennearithmétique de

1x et1y est comprise entre1x et1y , ce qui fournit1y 61h
61x
, ou encore x6h6y. 5. D"après 3), la mo yennegéométrique des deux réels 1x et1y est inférieure ou égale à leur moyenne arithmétique. Ceci fournitq1 x :1y 612
(1x +1y )ou encore1g 61h
et finalement x6h6g6m6yoù1h =12 1x +1y ,g=pxyetm=x+y2 .Remarque 1.On ah=2xyx+y, mais cette expression ne permet pas de comprendre que1h est la moyenne arithmétique de 1x et1y Remarque 2.On peut visualiser l"inégalité entre moyenne arithmétique et géométrique.

Si(ABC)est un triangle rectangle enAetA0est le pied de la hauteur issue deA, on sait queAA02=A0B:A0C.

On se sert de cette remarque pour construireget la comparer graphiquement àm. Onaccolledeuxsegmentsdelongueursrespectivesxety. Onconstruitalorsuntrianglerectangled"hypothénuse

ce segment (de longueurx+y) noté [BC], tel que le troisième sommetAait une projection orthogonaleA0sur

(BC)vérifiantBA0=xetCA0=y.x+ym g x y A

B CALa moyenne arithmétique dexetyestm=x+y2

, le rayon du cercle, et la moyenne géométrique dexetyest g=pxy=pA

0B:A0C=AA0, la hauteur issue deAdu triangle(ABC).Correction del"exer cice2 N(1+a)n= (1+a):::(1+a) =1+na+:::>1+na.Correction del"exer cice3 N4

Pourn2N,(1+1n

)n=ånk=0Cknn k. Pourk2 f0;:::;ng, posonsuk=Cknn kpuisvk=uk+1u k. Pourk2 f1;:::;n1g, on a alors v k=Ck+1n:nkC kn:nk+1=1n +n+1n(k+1) 61n
+n+12n(cark>1) 12

12n<12

Ainsi, pourk2 f1;:::;n1g,uk+1612

uket donc, immédiatement par récurrence, u k612 k1u1=12 k1nn =12 k1:

En tenant compte deu0=1, on a alors pourn2N,

(1+1n )n=nå k=0u k61+nå k=112 k1=1+112 n112 =1+2(112 n) =312 n1<3:Correction del"exer cice4 NSoientn2Neta1,a2,...,an,nréels strictement positifs. nå i=1a i! nå j=11a j!

16i;j6na

ia j=nå i=1a ia i+å

16i j+aja i) =n+å

16i j+aja i)

Pourx>0, posons alorsf(x) =x+1x

.fest dérivable sur]0;+¥[et pourx>0,f0(x) =11x

2=(x1)(x+1)x

2.f

est donc strictement décroissante sur]0;1]et strictement croissante sur[1;+¥[.fadmet ainsi un minimum en

1. Par suite,

8x>0;f(x)>f(1) =1+11

=2:

(Remarque.L"inégalité entre moyenne géométrique et arithmétique permet aussi d"obtenir le résultat :

12 (x+1x )>rx:1x =1:)

On en déduit alors que

nå i=1a inå j=11a j>n+å

16i

=n2:Correction del"exer cice5 NPourxréel, posonsf(x) =ånk=1(ak+bkx)2. On remarque que pour tout réelx,f(x)>0. En développant lesn

carrés, on obtient, f(x) =nå k=1(b2kx2+2akbkx+a2k) = (nå k=1b2k)x2+2(nå k=1a kbk)x+(nå k=1a2k):

1er cas.Siånk=1b2k6=0,fest un trinôme du second degré de signe constant surR. Son discriminant réduit est

alors négatif ou nul. Ceci fournit 5

0>D0= (nå

k=1a kbk)2(nå k=1b2k)(nå k=1a2k); et donc nå k=1a kbk 6sn k=1a2ksn k=1b2k:

2ème cas.Siånk=1b2k=0, alors tous lesbksont nuls et l"inégalité est immédiate.

Finalement, dans tous les cas,

j

ånk=1akbkj6qå

nk=1a2kqå

nk=1b2k:Cette inégalité est encore valable en remplaçant lesaket lesbkpar leurs valeurs absolues, ce qui fournit les

inégalités intermédiaires.

Retrouvons alors l"inégalité de l"exercice

4 . Puisque lesaksont strictement positifs, on peut écrire : nå i=1a i! nå i=11a i! nå i=1pa i2! nå i=1r1 a i2 nå i=1pa ir1 a i! 2

=n2:Correction del"exer cice6 NSi l"un des réelsa,boucest strictement plus grand que 1, alors l"un au moins des trois réelsa(1b),b(1c),

c(1a)est négatif (puisquea,betcsont positifs) et donc inférieur ou égal à14 Sinon, les trois réelsa,betcsont dans[0;1]. Le produit des trois réelsa(1b),b(1c)etc(1a)vaut a(1a)b(1b)c(1c): Mais, pourx2[0;1],x(1x)est positif et d"autre part,x(1x) =(x12 )2+14 614
. Par suite, a(1a)b(1b)c(1c)614 3: Il est alors impossible que les trois réelsa(1b),b(1c)etc(1a)soient strictement plus grand que14 , leur produit étant dans ce cas strictement plus grand que 14 3.

On a montré dans tous les cas que l"un au moins des trois réelsa(1b),b(1c)etc(1a)est inférieur ou

égal à

14

.Correction del"exer cice7 N1.Soit x2R. Alors,E(x)6x on a bienE(x+1) =E(x)+1. 2.

Soient (x;y)2R2. On aE(x)+E(y)6x+y. Ainsi,E(x)+E(y)est un entier relatif inférieur ou égal à

x+y. CommeE(x+y)est le plus grand entier relatif inférieur ou égal àx+y, on a doncE(x)+E(y)6

E(x+y).

Améliorons.E(x)6xSoit (x;y)2R2. Posonsk=E(x)etl=E(y).

6

1er cas.Six2[k;k+12

[ety2[l;l+12 [, alorsx+y2[k+l;k+l+1[et doncE(x+y) =k+l, puisE(x)+ E(y)+E(x+y) =k+l+k+l=2k+2l. D"autre part, 2x2[2k;2k+1[et 2y2[2l;2l+1[. Par suite,E(2x)+E(2y) =2k+2l. Dans ce cas,E(x)+E(y)+E(x+y) =E(2x)+E(2y).

2ème cas.Six2[k+12

;k+1[ety2[l;l+12 [, alorsx+y2[k+l+12 ;k+l+32 [et doncE(x+y) =k+lou k+l+1,puisE(x)+E(y)+E(x+y) =2k+2lou 2k+2l+1. D"autre part, 2x2[2k+1;2k+2[ et 2y2[2l;2l+1[. Par suite,E(2x)+E(2y) =2k+2l+1. Dans ce cas,E(x)+E(y)+E(x+y)6

E(2x)+E(2y).

3ème cas.Six2[k;k+12

[ety2[l+12 ;l+1[, on a de mêmeE(x)+E(y)+E(x+y)6E(2x)+E(2y).

4ème cas.Six2[k+12

;k+1[ety2[l+12 ;l+1[, on aE(x)+E(y)+E(x+y) =2k+2l+2=E(2x)+E(2y).

Finalement, on a dans tous les casE(x)+E(y)+E(x+y)6E(2x)+E(2y).Correction del"exer cice8 Npest déterminé par l"encadrement : 10p6n<10p+1qui s"écrit encorep6lnnln10

p=E(log10(n)):Le nombre de chiffres d"un entiernen base 10 est doncE(log10(n))+1.Correction del"exer cice9 NSoientx2Retn2N. Pour 16k6n, on a

kx1En sommant ces inégalités, on obtient

E(x)+E(2x)+:::+E(nx)n

26x+2x+:::+nxn

2=n(n+1)x2n2=(n+1)x2n;

et aussi,

E(x)+E(2x)+:::+E(nx)n

2>(x1)+(2x1)+:::+(nx1)n

2=n(n+1)x=2nn

2=(n+1)x2n1n

Finalement, pour tout naturel non nul,

(n+1)x2n1n 26(n+1)x2n:

Les deux membres extrêmes de cet encadrement tendent vers x2 quandntend vers+¥. D"après le théorème des gendarmes, on peut affirmer que

8x2R;limn!+¥E(x)+E(2x)+:::+E(nx)n

2=x2

:Correction del"exer cice10 N1.P ardéfinition d"un entier ,il y a nentiers entre 1 etn. Ensuite, pour tout entier naturelk, on a

16k6x,16k6E(x):

Il y a doncE(x)entiers entre 1 etx.

7

2.Il y a n+1 entiers entre 0 etnetE(x)+1 entiers entre 0 etx.

3. Les entiers naturels pairs sont les entiers de la forme 2 k,k2N. Or,

062k6x,06k6x2

Le nombre des entiers pairs compris entre 0 etxest encore le nombre des entierskcompris au sens large

entre 0 et x2 . D"après 2), il y aE(x2 )+1 entiers pairs entre 0 etx. De même, il y aE(x3 )+1 multiples de

3 entre 0 etx.

De même,

062k+16x, 12

6k6x12

,06k6E(x12

Il y a doncE(x12

)+1=E(x+12 )entiers impairs entre 0 etx. 4.

Il y a E(x3

)+1 multiples de 3 entre 0 etx. 5.

Soient n2Net(x;y)2N2. On a

x+2y=n,x=n2y: Donc,(x;y)est solution si et seulement siy2Netn2y2Nou encore si et seulement si 062y6n. Il y a doncE(n2 )+1 couples solutions. 6.

Si xetysont respectivement le nombre de pièces de 10 centimes d"euros et le nombre de pièces de 20

centimes d"euros, le nombre cherché est le nombre de couples d"entiers naturels solutions de l"équation

10x+20y=1000 qui s"écrit encorex+2y=100. D"après 5), il y aE(1002

)+1=51 façons de payer 10 euros avec des pièces de 10 et 20 centimes d"euros. 7.

Soient n2Net(x;y)2N2. On a

2x+3y=n,x=n3y2

Donc, (x;y)solution,x=n3y2 ety2Netn3y22N: Maintenant, commen3y= (ny)2yet que 2yest un entier pair,n3yest pair si et seulement si nyest pair ce qui revient à dire queya la parité den. Ainsi, (x;y)solution,x=n3y2 ety2Net 06y6n3 etya la parité den:

1er cas.Sinest pair, le nombre de couples solutions est encore le nombre d"entiers pairsycompris au sens

large entre 0 et n3 . Il y aE(n6 ))+1=E(n+66 )tels entiers.

2ème cas.Sinest impair, le nombre de couples solutions est encore le nombre d"entiers impairsycompris au

quotesdbs_dbs42.pdfusesText_42
[PDF] algorithmique programmation pascal exercices corrigés

[PDF] exercice corrigé sur les tableaux en pascal

[PDF] programme pascal informatique cours

[PDF] cours passé composé pdf

[PDF] exercice passé composé ce2 francais facile

[PDF] évaluation passé composé ce1

[PDF] exercice passé composé 6ème pdf

[PDF] imparfait ou passé simple comment choisir

[PDF] comment calculer la hauteur d'un cone avec pythagore

[PDF] activité pavage collège

[PDF] etude d'un pendule simple tp

[PDF] pendule simple cours

[PDF] pendule pesant pdf

[PDF] équation différentielle pendule simple avec frottement

[PDF] energie mecanique pendule simple