[PDF] 9 Quantization of Gauge Fields





Previous PDF Next PDF



6. Quantum Electrodynamics

We will use ? = 1 which is called “Feynman gauge”. The other common choice



9 Quantization of Gauge Fields

Feynman gauge. In this gauge the calculations are simplest although here too



Quantum Field Theory II

21 de ago. de 2011 2.3 Quantization of the non-Abelian Gauge Field . . . . . . . . . . . . . . . . 41. 2.3.1 Feynman Rules for QCD .



Electroweak Feynman Rules in the Unitary Gauge (one fermionic

Schroeder. Electroweak Feynman Rules in the Unitary Gauge (one fermionic generation). Propagators: µ. W 



2 -? The photon propagator

=1 (no interactions). Feynman propagator Lorentz gauge ?µ ... Want to be able to determine the propagator is various gauges …



Lecture 16 Feynman Rules in Non Abelian Gauge Theories

Here we press on with non-abelian gauge theories by deriving their Feynman rules. How- ever before we can safely apply them to compute scattering 



Quantum Field Theory and the Electroweak Standard Model

Feynman diagrams are introduced. The formalism is extended to the fermion and gauge fields stressing peculiarities in the quantization procedure and Feynman 





Parametric Representation of Feynman Amplitudes in Gauge Theories

scalar theories to gauge theories: quantum electrodynamics scalar electrody- For the Feynman gauge



Two-loop calculation in Feynman gauge 1. Introduction

Feynman gauge. In the same way we reproduce also the two-loop kernel P of the nonsinglet. Lipatov-Altarelli-Parisi evolution equation For some classes of 



[PDF] Feynman Rules for the Standard Model

In this Appendix we will give the complete Feynman rules for the Standard Model in the general R? gauge D 2 The Standard Model



[PDF] 6 Quantum Electrodynamics - DAMTP

We will use ? = 1 which is called “Feynman gauge” The other common choice ? = 0 is called “Landau gauge” ) Our plan will be to quantize the theory 



[PDF] 2 -? The photon propagator

=1 (no interactions) Feynman propagator In the Lorenz gauge Want to be able to determine the propagator is various gauges



[PDF] Introduction to the Standard Model

Lecture 8: Quantisation and Feynman Rules Quantisation of Gauge Fields problem with gauge fields: Given the field equation: Mµ?Aµ = J?



[PDF] Lecture 16 Feynman Rules in Non Abelian Gauge Theories

Here we press on with non-abelian gauge theories by deriving their Feynman rules How- ever before we can safely apply them to compute scattering 



[PDF] Parametric Representation of Feynman Amplitudes in Gauge Theories

Parametric Representation of Feynman Amplitudes in Gauge Theories Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium



(PDF) On Feynmans approach to the foundations of gauge theory

PDF In 1948 Feynman showed Dyson how the Lorentz force law and homogeneous Maxwell equations could be derived from commutation relations among



[PDF] ADVANCED QUANTUM FIELD THEORY

As an example of the application of these Feynman rules we consider the process of Compton scattering but this time for the scattering of non-Abelian gauge- 



[PDF] Electroweak Feynman Rules in the Unitary Gauge (one fermionic

Peskin and D Schroeder Electroweak Feynman Rules in the Unitary Gauge (one fermionic generation) Propagators: µ



[PDF] arXiv:12096213v2 [hep-ph] 21 Oct 2012

21 oct 2012 · Sections 4 and 5 contain all Feynman rules of the SM including would-be Goldstone bosons and ghosts in an arbitrary R? gauge in a convention- 

:
9

QuantizationofGaugeFields

Wewi llnowturntot heproble mofthequanti zation ofgauget heories.We willbegin withthesimplestg augetheor y,thefre eelectromagneticfield. Thisisanabeliangaugethe ory.Afterthatwewilld iscussatlengthth e quantizationofnon-abeliangaugefiel ds.Un likeabeliantheories,suchasthe freeelect romagneticfield,evenintheabsenceofmatterfieldsnon- abelian gaugetheor iesarenotfreefieldsandha vehighl ynon-tr ivialdynamics.

9.1Canonic alquantizationofthefre eelectromagneticfield

TheMaxw elltheorywasthefirstfie ldtheorytobequant ized.Thequa nti- zationprocedureof agaugetheory,evenforafree field,i nvo lvesanumbe rof subtletiesnotsharedbytheother problems thatwehaveconsideredsofar. Theissu eisthefactthatt histh eoryhasal ocalgaugeinv ariance.Unlike systemswhichonlyh aveglobalsymmet ries,notallth eclassicalconfigu - rationsofvectorpot ential srepresentphysicall ydistinctstates.Itcouldbe arguedthatonesh ouldabandonth epictu rebasedonthevect orpotential andgoback toa picturebas edonel ect ricandmagneticfieldsinstead.How- ever,therei snolocalLagra ngiant hatcan describethetim eevolutionofthe systeminthatre present ation.Furth ermore,isnotclearwhichfield s,Eor B(orsome otherfield)pla ystheroleofc oordinatesandwhi chcanp laythe roleofmom entum. Forthatreason,andothers,ones tickstotheLa grangian formulationwiththevectorpotent ialA asit sindepend entcoordinate-like variable.

TheLagr angianfortheMaxwelltheory

L=! 1 4 F F (9.1)

262QuantizationofGaugeFields

whereF A A ,canbewrittenintheform L= 1 2 (E 2 !B 2 )(9.2) where E j 0 A j j A 0 ,B j jk k A (9.3)

Theelec tricfieldE

j andthes pacecomponen tsofthevector potentialA j formacano nic alpairsince,bydefinition,th emomentum j conjugateto A j is j (x)= #L 0 A j (x) 0 A j j A 0 =!E j (9.4) Noticethatsinc eLdoesnotcont ainany termswhichinclude! 0 A 0 ,the momentum 0 ,conjugatetoA 0 ,vanishes 0 #L 0 A 0 =0(9.5)

AconsequenceofthisresultisthatA

0 ises sentiallyarbitraryanditplays therol eofaLagrange multipl ier .Indeed,itisalwayspossi bletofind agauge transformation$ A 0 =A 0 0 A j =A j j $(9.6) suchthatA 0 =0.Th esolutionis 0 $=!A 0 (9.7) whichisconsi stentp rovidedthatA 0 vanishesbothintheremot epartand inth eremotefu ture,x 0 Thecano nicalformalismcanbeapplied toMaxwellelectrodynamicsif weno ticethatthefieldsA j (x)and! j "(x )obeytheequ al-timePois son

Brackets

{A j (x),! j "(x PB jj 3 (x!x )(9.8) or,int ermsoft heelectricfieldE, {A j (x),E j "(x PB jj 3 (x!x )(9.9) Thus,thespat ialcompon entsofthevectorpoten tialandthecomponents ofth eelectric fieldarecanonicalpairs.Howeve r,thetimecomponentof thevecto rfield,A 0 proceduretreatsitsepar ately,asaLagrangem ultiplie rfieldth atisimposing level,thecondit ion 0

9.1Can onicalquantizationofthefre eelectromagneticfield263

ledDirac toformulateth etheor yofquantizationofsystemswithconstr aints (Dirac,1966).Thereis ,however,anothe rapproach,alsoi nitiatedbyDirac, consistinginsettingA 0 =0andtoimposetheGaussLawasaconstraint ont hespaceofqu antumstates.As wew illsee,thisamountst ofixingthe gaugefirst (atthepriceofm anifes tLorentzin variance). Theclas sicalHamiltoniandensityisd efinedintheusualmanner H=! j 0 A j !L(9.10)

Wefi nd

H(x)= 1 2 (E 2 +B 2 )!A 0 (x)!$E(x)(9.11) Exceptforthelastt erm,thisi stheusual answer.Itis easytoseethatthe lasttermis aconstantofmotion.Indeedtheequal-timePoissonBracket betweentheHamiltoni andensityH(x)and!$E(y)isze ro.Byexplicit calculation,weget {H(x),!$E(y)} PB =!d 3 z!! #H(x) A j (z) #!$E(y) E j (z) #H(x) E j (z) #!$E(y) A j (z) (9.12) But #H(x) A j (z) =!d 3 w #H(x) B k (w) B k (w) A j (z) =!d 3 wB k (w)#(x!w)" k j w #(w!z) k j z !d 3 wB k (w)#(x!w)#(w!z) (9.13) Hence #H(x) A j (z) j k z (B k (x)#(x!z))=" j k B k (x)% x #(x!z)(9.14)

Similarly,weget

#!$E(y) E j (z) y j #(y!z), #!$E(y) A j (z) =0(9.15)

Thus,thePoiss onBracket is

{H(x),!$E(y)} PB =!d 3 z[!" j k B k (x)% x #(x!z)% y j #(y!z)] j k B k (x)% x y j #(x!y) j k B k (x)% x x j #(x!y)=0 (9.16)

264QuantizationofGaugeFields

providedthatB(x)isno n-singular.Thus,!$E(x)isa constantofmotion. Itis easyto checkthat !$Egeneratesinfinitesimalgauget ransformations. Wewi llprovethis statementdirect lyinthequan tumtheory. Since!$E(x)isac ons tantofmotion,ifwepickavalue foritat some initialtimex 0 =t 0 !$E(x)=%(x)(9.17) whichwerecog nizeto beGauss'sLaw.Naturally,anex ternal chargedistri- butionmaybeex plicitlyti medepende ntandthen d dx 0 (!$E)= x 0 (!$E)= x 0 ext (x,x 0 )(9.18) Beforeturning tothequantizationofthi stheor y,wemustn oticethatA 0 playstheroleof aLagra ngemultiplierfie ldwhose var iationyieldstheGauss Law,!$E=0.He nce,theGaussLawshoul dberegarde dasaconstraint ratherthananequ ationofmotio n.This issuebecomesveryimportantin thequan tumtheory.Indeed,with outtheconstraint!$E=0,th etheory isab solutelytrivial,andwrong. Constraintsimposeverysevereres trictionsontheallo wedstatesofa quantumtheory.Cons iderforinstanceapart icleofmassmmovingfreelyin threedimensio nalspace.Itsstationarystateshaveplane wavewavef unctions p (r,x 0 ),withanenergyE(p)= p 2 2m .Ifweconstraintheparticletomove onlyonthesu rfac eofasphere ofradiusR,itbecomesequivalenttoarigid rotorofmoment ofinert iaI=mR 2 andener gyeigenvalues" m h 2 2I &(&+1) 2 =R 2 doeshavenon- triviale ects. Unlikethecas eofapartic leforcedtomo veonth esu rfaceofasphere,the constraintsthatwehavetoimposew henquantizing Maxwell electrodynam- icsdon otchan getheener gyspectrum.Thisisso becausewe canreduce thenumb erofdegreesoffreed omtobe quantizedbytakingadvantageof thegaug einvarianceofthe classicaltheory.Thisprocedureiscalledgauge 2 A A )=0(9.19) inth eCoulombga uge,A 0 =0and!$A=0,be comes 2 A j =0(9.20) HowevertheCoulombgau geisnotco mpatiblewiththePoisson Bracket $A j (x),! j ,(x PB jj "#(x!x )(9.21)

9.1Can onicalquantizationofthefre eelectromagneticfield265

sincethespatia ldivergen ceofthedeltafunct iondoesnotvanish.Itwill followthatthequa ntizationoft hetheory intheCoulombgaugeis achiev ed atth epriceofam odificationofthecom mut ation relations. Sincetheclas sicalt heoryisgauge-invariant,wecan alwaysfixthegauge withoutanylossofphy sicalcont ent.Theproce dureof gaugefixinghasthe attractivethatthenumberofin dependent variablesi sgreatlyredu ced.A standardapproachtotheq uantizationofagaugetheo ryisto fixthe gauge first,atthecla ssical level, andtoquantizelater. However,anumberofprob lems ariseimmediately.Forin stance,in most gauges,suchasthe Coulombgauge,Lore ntz invariancei slost,or atleas t itism anif estlyso.Thus,althoughtheC oulombgaug e,alsoknownasthe radiationortransversegauge, spoil sLorentzinvariance,itha stheattr active featurethatthenatur eofthephysi calstates (thephotons)isquitetrans- parent.Wewillseebel owthatt hequantizatio nofthetheor yinth isgauge hassom epeculiaritie s.

Anotherstandardcho iceistheLorentzgauge

A =0(9.22) whosemainappe alisitsmanif estcovariance.Theq uantiz ationoft hesyst em isth isgaugefollo wsthemethoddev elopedbyandGupta andBleuer.While highlysuccessf ul,itrequirestheintroductionofst atesw ithneg ativenorm (knownasghosts)wh ichcan celallthegauge-depe ndentcontributionsto physicalquantities.This approachisdescribedindetailinthebookby

ItzyksonandZuber(Itzy ksonandZub er,1980).

Moregener alcovariantgaugescana lsobedefined.Ageneralapproach consistsnotonimposing arigidrest rictio nonthedegreesoffreedom,but toad dnewtermsto theLagrang ianwhicheli min atethega ugefreedom.For instance,themodifiedLagran gian L=! 1 4 F 2 1quotesdbs_dbs14.pdfusesText_20
[PDF] feynman gauge propagator

[PDF] ffca school calendar 2020 2021

[PDF] ffl to ffl transfer

[PDF] fft coefficients

[PDF] fft meaning

[PDF] fft of chirp signal

[PDF] fft of image matlab

[PDF] fftfreq

[PDF] fftfreq matlab

[PDF] fiche de lecture a cp

[PDF] fiche de lecture compréhension cp a imprimer

[PDF] fiche de lecture cp a imprimer pdf

[PDF] fiche de lecture cp gratuite a imprimer

[PDF] fiche de lecture cp pdf

[PDF] fiche de lecture cp son a