[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



ALGORITHME SECONDE Exercice 5.1 Ecrire un algorithme qui

Exercice 5.1. Ecrire un algorithme qui demande à l'utilisateur un nombre compris entre 1 et 3 jusqu'à ce que la réponse convienne. corrigé - retour au cours.



Exercices avec Solutions

Exercices Corrigés d'Algorithmique – 1ére Année MI 5. EXERCICE 1. Ecrire un algorithme qui demande un nombre à l'utilisateur puis calcule et affiche le 



SUJET + CORRIGE

SUJET + CORRIGE. Avertissement DS Terminal Année 2012/2013 ... Dans cet exercice



Langage C : énoncé et corrigé des exercices IUP GéniE

soit éga l au no mb re de j ours du ièm e m ois de l'année pour i a ll ant de 1 à 12 (iNb-jours [0] sera inutil isé ) . Ecrire une procédure d 'initia l 



livre-algorithmes.pdf

Mini-exercices. 1. Pour un entier n fixé combien y-a-t-il d'occurrences du chiffre 1 dans l'écriture des nombres de 1 à n ?



Exercices corrigés

année. 2010 – 2011. Informatique Scientifique version 2.2. Python 3. Exercices corrigés Écrire l'algorithme du calcul de : m3 = m1?m2.



1 N.B. On suppose que tous les tableaux utilisés ont une dimension

printf (''année non bissextile'') ;. } Exercice 11 : Page 6. D. El Ghanami. 6. Écrire un algorithme qui détermine le numéro d'un jour dans l'année en fonction 



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Corrigé Série dexercices n°4 : Les fonctions et procédures

Exercice 13 : Ecrire un algorithme (en utilisant fonction et/ou procédure) qui permet de calculer le cosinus de x € [0. ?/ 





[PDF] Exercices avec Solutions

Exercices Corrigés d'Algorithmique – 1ére Année MI 5 EXERCICE 1 Ecrire un algorithme qui demande un nombre à l'utilisateur puis calcule et affiche le 



[PDF] exercices corrigés algorithmepdf - fustel-yaoundenet

EXERCICES – ALGORITHME SECONDE Exercice 5 1 Ecrire un algorithme qui demande à l'utilisateur un nombre compris entre 1 et 3 Corrigés des Exercices



[PDF] TD-Algorithmique (Exercices corrigés)pdf

Exercice 10 : Écrire un algorithme qui détermine si une année est bissextile ou non On rappelle que les années bissextiles sont multiples de 4 



Les exercices en algorithme - Coode Maroc

28 mai 2021 · Exercice 49 Écrire un algorithme permettant de décaler les valeurs nulles vers la fin du tableau en gardant l'ordre des éléments Exemple 1 



[PDF] Initiation à lAlgorithmique Cours et exercices corrigés

Centre Universitaire Belahdj Bouchaib - Ain Témouchent Initiation à l'Algorithmique Cours et exercices corrigés 1ère année tronc commun MI ST et SM



[PDF] livre-algorithmespdf - Exo7 - Cours de mathématiques

PREMIÈRE ANNÉE Exo7 Arithmétique – Algorithmes récursifs mais ce n'est pas le cas ici (c'est un bon exercice de le prouver)



[PDF] Algorithmique et programmation : les bases (Algo) Corrigé - F2School

L'algorithme se termine avec l'affichage du périmètre pour que l'utilisateur puisse le voir sur l'écran Exercice 1 : Lien entre raffinage et algorithme Donner 



[PDF] SUJET + CORRIGE

SUJET + CORRIGE Avertissement DS Terminal Année 2012/2013 Dans cet exercice nous allons adapter des algorithmes de tri vus



ALGORITHMIQUE 83 ExerciceS corrigés By ExoSup - Academiaedu

ALGORITHMIQUE 83 ExerciceS corrigés By ExoSup Download Free PDF un algorithme qui a près avoir demandé un numéro de jour de mois et d'année à 



(PDF) EXERCICES CORRIGEE ALGORITHME misis siham

Download Free PDF ALGORITHMIQUE 83 ExerciceS corrigés By ExoSup Ecrivez un algorithme qui a près avoir demandé un numéro de jour de mois et d'année 

  • Comment corriger un algorithme ?

    Pour s'assurer qu'un algorithme est correct, il faut démontrer deux choses: il faut démontrer que l'algorithme se termine (terminaison), autrement dit qu'il ne boucle pas ou ne diverge pas, produisant au moins un résultat et que le résultat de l'algorithme est effectivement de la forme énoncée par la spécification (
  • Comment apprendre l'algorithme facilement ?

    Préoccupez-vous d'abord du fond puis de la forme du problème. Concentrez-vous uniquement sur le problème donné et ne pas vous préoccupez de ce que vous ne maîtrisez pas encore très bien. Rédigez directement votre algorithme dans votre langage de programmation comme vous le penser et au feeling.
  • Comment trouver le bon algorithme ?

    Résumé des étapes de la méthode

    1Lisez bien le sujet, et reformulez-le.2Faites la liste des dimensions du sujet.3Cherchez une bonne représentation visuelle du problème.4Générez des exemples, et résolvez-les entièrement à la main.5Décrivez la solution naïve, puis essayez de l'améliorer.
  • Pour prouver qu'un algorithme termine, il suffit de montrer qu'il ne boucle pas à l'infini.
Exo7 Arithmétique dansZ1 Divisibilité, division euclidienne

Exercice 1Sachant que l"on a 96842=256375+842, déterminer, sans faire la division, le reste de la division du nombre

96842 par chacun des nombres 256 et 375.

Montrer que8n2N:

n(n+1)(n+2)(n+3)est divisible par 24; n(n+1)(n+2)(n+3)(n+4)est divisible par 120:

Montrer que sinest un entier naturel somme de deux carrés d"entiers alors le reste de la division euclidienne

denpar 4 n"est jamais égal à 3.

Démontrer que le nombre 7

n+1 est divisible par 8 sinest impair ; dans le casnpair, donner le reste de sa division par 8. Trouver le reste de la division par 13 du nombre 100 1000.
1. Montrer que le reste de la di visioneuclidienne par 8 du carré de tout nombre impair est 1. 2. Montrer de même que tout nombre pair vérifie x2=0(mod 8)oux2=4(mod 8): 3. Soient a;b;ctroisentiersimpairs. Déterminerlerestemodulo8dea2+b2+c2etceluide2(ab+bc+ca): 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab+bc+canon plus.

2 pgcd, ppcm, algorithme d"Euclide

Exercice 7Calculer le pgcd des nombres suivants :

1.

126, 230.

2.

390, 720, 450.

3.

180, 606, 750.

Déterminer les couples d"entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Calculer par l"algorithme d"Euclide : pgcd(18480;9828). En déduire une écriture de 84 comme combinaison

linéaire de 18480 et 9828.

Notonsa=1 111 111 111 etb=123 456 789.

1. Calculer le quotient et le reste de la di visioneuclidienne de aparb. 2.

Calculer p=pgcd(a;b).

3. Déterminer deux entiers relatifs uetvtels queau+bv=p.

Résoudre dansZ: 1665x+1035y=45:

Exercice 12Combien 15! admet-il de diviseurs ?

Démontrer que, siaetbsont des entiers premiers entre eux, il en est de même des entiersa+betab.

Soienta;bdes entiers supérieurs ou égaux à 1. Montrer :

1.(2a1)j(2ab1);

2. 2 p1 premier)ppremier ; 2

3.pgcd (2a1;2b1) =2pgcd(a;b)1.

Soita2Ntel quean+1 soit premier, montrer que9k2N;n=2k:Que penser de la conjecture :8n2N;22n+1 est premier ?

Soitpun nombre premier.

1.

Montrer que 8i2N;0 C ipest divisible parp: 2.

Montrer par récurence que :

8ppremier;8a2N;on aapaest divisible parp:

1.

Montrer par récurrence que 8n2N;8k>1 on a :

2

2n+k1=

22n1
k1Õ i=0(22n+i+1): 2. On pose Fn=22n+1. Montrer que pourm6=n,FnetFmsont premiers entre eux. 3. En déduire qu"il y a une infinité de nombres premiers. SoitXl"ensemble des nombres premiers de la forme 4k+3 aveck2N. 1.

Montrer que Xest non vide.

2. Montrer que le produit de nombres de la forme 4 k+1 est encore de cette forme. 3. On suppose que Xest fini et on l"écrit alorsX=fp1;:::;png. Soita=4p1p2:::pn1. Montrer par l"absurde queaadmet un diviseur premier de la forme 4k+3. 4. Montrer que ceci est impossible et donc que Xest infini.

Indication pourl"exer cice1 NAttention le reste d"une division euclidienne est plus petit que le quotient !

Indication pour

l"exer cice

4 NUtiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo

8. Ici vous pouvez commencer par calculer 7

n(mod 8).Indication pourl"exer cice5 NIl faut travailler modulo 13, tout d"abord réduire 100 modulo 13. Se souvenir que siab(mod 13)alors

a kbk(mod 13). Enfin calculer ce que cela donne pour les exposantsk=1;2;3;:::en essayant de trouver une règle générale.Indication pourl"exer cice6 N1.Écrire n=2p+1. 2. Écrire n=2pet discuter selon quepest pair ou impair. 3.

Utiliser la première question.

4. P arl"absurde supposer que cela s"écri vecomme un carré, par e xemplea2+b2+c2=n2puis discuter

selon quenest pair ou impair.Indication pourl"exer cice11 NCommencer par simplifier l"équation ! Ensuite trouver une solution particulière(x0;y0)à l"aide de l"algorithme

d"Euclide par exemple. Ensuite trouver un expression pour une solution générale.Indication pourl"exer cice12 NIl ne faut surtout pas chercher à calculer 15!=123415, mais profiter du fait qu"il est déjà

"presque" factorisé.Indication pourl"exer cice13 NRaisonner par l"absurde et utiliser le lemme de Gauss.

Indication pour

l"exer cice

14 NPour 1. utiliser l"égalité

x b1= (x1)(xb1++x+1): Pour 2. raisonner par contraposition et utiliser la question 1. La question 3. est difficile ! Supposera>b. Commencer par montrer que pgcd(2a1;2b1) =pgcd(2a 2 b;2b1) =pgcd(2ab1;2b1). Cela vour permettra de comparer l"agorithme d"Euclide pour le calcul de

pgcd(a;b)avec l"algorithme d"Euclide pour le calcul de pgcd(2a1;2b1).Indication pourl"exer cice15 NRaisonner par contraposition (ou par l"absurde) : supposer quenn"est pas de la forme 2k, alorsnadmet un

facteur irréductiblep>2. Utiliser aussixp+1= (x+1)(1x+x2x3+:::+xp1)avecxbien choisi.Indication pourl"exer cice16 N4

1.Écrire

C ip=p(p1)(p2):::(p(i+1))i! et utiliser le lemme de Gauss ou le lemme d"Euclide. 2.

Raisonner a vecles modulos, c"est-à-dire prouv erapa(modp).Indication pourl"exer cice17 N1.Il f autêtre très soigneux : nest fixé une fois pour toute, la récurrence se fait surk>1.

2.

Utiliser la question précédente a vecm=n+k.

3. P arl"absurde, supposer qu"il y a seulement Nnombres premiers, considérerN+1 nombres du typeFi.

Appliquer le "principe du tiroir" :si vous avez N+1chaussettes rangées dans N tiroirs alors il existe

(au moins) un tiroir contenant (plus de) deux chaussettes.5

Correction del"exer cice1 NLa seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les

divisions euclidiennes s"écrivent : 96842=256378+74 et 96842=258375+92.Correction del"exer cice2 NIl suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un multiple de 2, un multiple de

3, un multiple de 4 (distinct du mutliple de 2). Donc le produit de 4 nombres consécutifs est divisible par

234=24.Correction del"exer cice3 NEcriren=p2+q2et étudier le reste de la division euclidienne denpar 4 en distinguant les différents cas de

parité depetq.Correction del"exer cice4 NRaisonnons modulo 8 :

7 1(mod 8):

Donc 7 n+1(1)n+1(mod 8):

Le reste de la division euclidienne de 7

n+1 par 8 est donc(1)n+1 donc Sinest impair alors 7n+1 est

divisible par 8. Et sinest pair 7n+1 n"est pas divisible par 8.Correction del"exer cice5 NIl sagit de calculer 100

1000modulo 13. Tout d"abord 1009(mod 13)donc 100100091000(mod 13). Or

9

2813(mod 13), 9392:93:91(mod 13), Or 9493:99(mod 13), 9594:99:93

(mod 13). Donc 10010009100093:333+1(93)333:91333:99(mod 13).Correction del"exer cice6 N1.Soit nun nombre impair, alors il s"écritn=2p+1 avecp2N. Maintenantn2= (2p+1)2=4p2+4p+

1=4p(p+1)+1. Doncn21(mod 8).

2. Si nest pair alors il existep2Ntel quen=2p. Etn2=4p2. Sipest pair alorsp2est pair et donc n

2=4p2est divisible par 8, doncn20(mod 8). Sipest impair alorsp2est impair et doncn2=4p2

est divisible par 4 mais pas par 8, doncn24(mod 8). 3. Comme aest impair alors d"après la première questiona21(mod 8), et de mêmec21(mod 8), c

21(mod 8). Donca2+b2+c21+1+13(mod 8). Pour l"autre reste, écrivonsa=2p+1 et

b=2q+1,c=2r+1, alors 2ab=2(2p+1)(2q+1) =8pq+4(p+q)+2. Alors 2(ab+bc+ca) =

8pq+8qr+8pr+8(p+q+r)+6, donc 2(ab+bc+ca)6(mod 8).

4. Montrons par l"absurde que le nombre a2+b2+c2n"est pas le carré d"un nombre entier. Supposons qu"il existen2Ntel quea2+b2+c2=n2. Nous savons quea2+b2+c23(mod 8). Sinest impair alorsn21(mod 8)et sinest pair alorsn20(mod 8)oun24(mod 8). Dans tous les casn2

n"est pas congru à 3 modulo 8. Donc il y a une contradiction. La conclusion est que l"hypothèse de

départ est fausse donca2+b2+c2n"est pas un carré. Le même type de raisonnement est valide pour

2(ab+bc+ca).

Pourab+bc+cal"argument est similaire : d"une part 2(ab+bc+ca)6(mod 8)et d"autre part si, par l"absurde, on supposeab+bc+ca=n2alors selon la parité dennous avons 2(ab+bc+ca)2n22

(mod 8)ou à 0(mod 8). Dans les deux cas cela aboutit à une contradiction. Nous avons montrer que

ab+bc+can"est pas un carré. 6

Correction del"exer cice7 NIl s"agit ici d"utiliser la décomposition des nombres en facteurs premiers.

1.

126 =2:32:7 et 230=2:5:23 donc le pgcd de 126 et 230 est 2.

2.

390 =2:3:5:13, 720=24:32:5, 450=2:32:52et donc le pgcd de ces trois nombres est 2:3:5=30.

3.

pgcd (180;606;750) =6.Correction del"exer cice8 NSoienta;bdeux entiers de pgcd 18 et de somme 360. Soita0;b0tel quea=18a0etb=18b0. Alorsa0etb0sont

premiers entre eux, et leur somme est 360=18=20.

Nous pouvons facilement énumérer tous les couples d"entiers naturels(a0;b0)(a06b0) qui vérifient cette

condition, ce sont les couples : (1;19);(3;17);(7;13);(9;11):

Pour obtenir les couples(a;b)recherchés (a6b), il suffit de multiplier les couples précédents par 18 :

(18;342);(54;306);(126;234);(162;198):Correction del"exer cice9 N1.pgcd (18480;9828) =84; 2.

25 18480+(47)9828=84.Correction del"exer cice10 N1.a=9b+10.

2. Calculons le pgcd par l"algorithme d"Euclide. a=9b+10,b=1234567810+9, 10=19+1. Donc le pgcd vaut 1; 3.

Nous reprenons les équations précédentes e npartant de la fin: 1 =109, puis nous remplaçons 9 grâce

à la deuxième équation de l"algorithme d"Euclide: 1=10(b1234567810) =b+1234679

10. Maintenant nous remplaçons 10 grâce à la première équation: 1=b+12345679(a9b) =

12345679a111111112b.Correction del"exer cice11 NEn divisant par 45 (qui est le pgcd de 1665;1035;45) nous obtenons l"équation équivalente :

37x+23y=1(E)

Comme le pgcd de 37 et 23 est 1, alors d"après le théorème de Bézout cette équation(E)a des solutions.

L"algorithme d"Euclide pour le calcul du pgcd de 37 et 23 fourni les coefficients de Bézout: 375+23

(8) =1. Une solution particulière de(E)est donc(x0;y0) = (5;8).

Nous allons maintenant trouver l"expression générale pour les solutions de l"équation(E). Soient(x;y)une

solution de l"équation 37x+23y=1. Comme(x0;y0)est aussi solution, nous avons 37x0+23y0=1. Faisons la différence de ces deux égalités pour obtenir 37(xx0)+23(yy0) =0. Autrement dit

37(xx0) =23(yy0) ()

7

On en déduit que 37j23(yy0), or pgcd(23;37) =1 donc par le lemme de Gauss, 37j(yy0). (C"est ici qu"il

est important d"avoir divisé par 45 dès le début !) Cela nous permet d"écrireyy0=37kpour unk2Z.

Repartant de l"égalité(): nous obtenons 37(xx0) =2337k. Ce qui donnexx0=23k. Donc si (x;y)est solution de(E)alors elle est de la forme :(x;y) = (x023k;y0+37k), aveck2Z.

Réciproquement pour chaquek2Z, si(x;y)est de cette forme alors c"est une solution de(E)(vérifiez-le !).

Conclusion : les solutions sont(523k;8+37k)jk2Z:Correction del"exer cice12 NÉcrivons la décomposition de 15!=1:2:3:4:::15 en facteurs premiers. 15!=211:36:53:72:11:13. Un diviseur

de 15! s"écritd=2a:3b:5g:7d:11e:13havec 06a611, 06b66, 06g63, 06d62, 06e61,

06h61. De plus tout nombredde cette forme est un diviseur de 15!. Le nombre de diviseurs est donc

(11+1)(6+1)(3+1)(2+1)(1+1)(1+1) =4032.Correction del"exer cice13 NSoitaetbdes entiers premiers entre eux. Raisonnons par l"absurde et supposons queabeta+bne sont pas

premiers entre eux. Il existe alorspun nombre premier divisantabeta+b. Par le lemme d"Euclide comme pjabalorspjaoupjb. Par exemple supposons quepja. Commepja+balorspdivise aussi(a+b)a, donc pjb.dne divise pasbcela implique quedetbsont premiers entre eux. D"après le lemme de Gauss, commeddiviseabetdpremier avecbalorsddivisea. Doncpest un facteur premier deaet debce qui est absurde.Correction del"exer cice14 N1.Nous sa vonsque x b1= (x1)(xb1++x+1); pourx=2anous obtenons : 2 ab1= (2a)b1= (2a1)

2a(b1)++2a+1

Donc(2a1)j(2ab1).

2. Montrons la contraposée. Supposons que pne soit pas premier. Doncp=abavec 1b. Nous allons montrer que faire l"algorithme d"Euclide pour le couple(2a1;2b

1)revient à faire l"algorithme d"Euclide pour(a;b). Tout d"abord rappellons la formule qui est à la

base de l"algorithme d"Euclide : pgcd(a;b) =pgcd(ab;b). Appliqué à 2a1 et 2b1 cela donne directement pgcd(2a1;2b1) =pgcd(2a2b;2b1). Mais 2a2b=2b(2ab1)d"où pgcd(2a

1;2b1) =pgcd(2b(2ab1);2b1) =pgcd(2ab1;2b1). La dernière égalité vient du fait 2bet

2 b1 sont premiers entre eux (deux entiers consécutifs sont toujours premiers entre eux). Nous avons montrer : pgcd(2a1;2b1) =pgcd(2ab1;2b1). Cette formule est à mettre en parallèle de pgcd(a;b) =pgcd(ab;b). En itérant cette formule nous obtenons que sia=bq+ralors : pgcd(2a1;2b1) =pgcd(2abq1;2b1) =pgcd(2r1;2b1)à comparer avec pgcd(a;b) =

pgcd(abq;b) =pgcd(r;b). Nous avons notre première étape de l"algorithme d"Euclide. En itérant

l"algorithme d"Euclide pour(a;b), nous nous arêtons au dernier reste non nul: pgcd(a;b) =pgcd(b;r) =

=pgcd(rn;0) =rn. Ce qui va donner pour nous pgcd(2a1;2b1) =pgcd(2b1;2r1) == pgcd(2rn1;201) =2rn1.

Bilan : pgcd(2a1;2b1) =2pgcd(a;b)1.

8

Correction del"exer cice15 N1.Supposons que an+1 est premier. Nous allons montrer la contraposée. Supposons quenn"est pas de la

forme 2 k, c"est-à-dire quen=pqavecpun nombre premier>2 etq2N. Nous utilisons la formule x p+1= (x+1)(1x+x2x3+:::+xp1) avecx=aq: a n+1=apq+1= (aq)p+1= (aq+1)(1aq+(aq)2++(aq)p1): Doncaq+1 divisean+1 et comme 1Cette conjecture est f ausse,mais pas f acileà vérifier sans une bonne calculette ! En ef fetpour n=5 nous

obtenons : 2

25+1=4294967297=6416700417:Correction del"exer cice16 N1.Étant donné 0 C ip=p!i!(pi)!=p(p1)(p2):::(p(i+1))i! CommeCipest un entier alorsi! divisep(p1):::(p(i+1)). Maisi! etpsont premiers entre eux (en

utilisant l"hypothèse 0 autrement dit il existek2Ztel queki!= (p1):::(p(i+1)). Maintenant nous avonsCip=pkdonc pdiviseCip. 2. Il s"agit de montrer le petit théorème de Fermat: pour ppremier eta2N, alorsapa(modp). Fixons p. Soit l"assertion (Ha)apa(modp): Poura=1 cette assertion est vraie ! Étant donnéa>1 supposons queHasoit vraie. Alors (a+1)p=på i=0Cipai:

Mais d"après la question précédente pour 0 (a+1)pC0pa0+Cppap1+ap(modp): Par l"hypothèse de récurrence nous savons queapa(modp), donc (a+1)pa+1(modp): Nous venons de prouver queHa+1est vraie. Par le principe de récurrence alors quelque soita2Nnous avons: a pa(modp):Correction del"exer cice17 N9

1.Fixons net montrons la récurrence surk>1. La formule est vraie pourk=1. Supposons la formule

vraie au rangk. Alors (22n1)kÕ i=0(22n+i+1) = (22n1)k1Õ i=0(22n+i+1)(22n+k+1) = (22n+k1)(22n+k+1) = (22n+k)21=22n+k+11:

Nous avons utiliser l"hypothèse de récurrence dans ces égalités. Nous avons ainsi montrer la formule au

rangk+1. Et donc par le principe de récurrence elle est vraie. 2. Écri vonsm=n+k, alors l"égalité précédente devient: F m+2= (22n1)m1Õ i=nF i:

Soit encore :

quotesdbs_dbs42.pdfusesText_42

[PDF] phalène du bouleau svt 3eme

[PDF] exercice svt la phalène du bouleau

[PDF] exercice sélection naturelle 3ème

[PDF] tentoxine

[PDF] exercice php en ligne

[PDF] exercices corrigés php debutant pdf

[PDF] exercice corrigé php pdf

[PDF] livre php5 pdf

[PDF] les types de phrases exercices ? imprimer

[PDF] exercices les types de phrases 6ème ? imprimer

[PDF] isomérie z e exercices corrigés pdf

[PDF] exercice représentation de lewis 1ere s

[PDF] puissance et énergie électrique exercices corrigés

[PDF] exercice transfert thermique sti2d

[PDF] adaptation hormonale ? l'exercice