[PDF] Th`ese de Doctorat de lUniversité Paris-Saclay Préparée `a





Previous PDF Next PDF



Communiqué de presse octobre 2006

17-Feb-2015 CentraleSupélec. Communications Department. Campus de Châtenay-Malabry Campus. Grande Voie des Vignes. 92295 Châtenay-Malabry Cedex – France.



The ValXplore method: exploring desirability feasibility and viability

Sonia Ben Hamida. CentraleSupélec Université Paris-Saclay. Chatenay Malabry sonia.ben-hamida@centralesupelec.fr. Alain Huet. Airbus Safran Launchers.





??�?�?���?���?�����

17-Feb-2015 Campus de Châtenay-Malabry Campus ... CentraleSupélec yesterday signed a partnership contract with the company Kluster for the.



A framework for asset prognostics from fleet data

Laboratoire Genie Industriel CentraleSupélec. Université Paris-Saclay. Chatenay-Malabry



Présentation PowerPoint

CentraleSupélec – Campus of Châtenay. Grande Voie des Vignes – 92290 – Châtenay-Malabry - France marisol.verstraete@centralesupelec.fr - Tel : +33 (0) 1 41 



Th`ese de Doctorat de lUniversité Paris-Saclay Préparée `a

15-May-2015 Préparée `a CentraleSupélec. Ecole Doctorale n ... Examinatrice (Pr) CentraleSupélec. Présidente du Jury Châtenay-Malabry France.



Experimental and theoretical charge density analysis of

29-Jul-2015 Centrale Supelec Châtenay-Malabry



Untitled

CentraleSupélec. 4 campus en France : Châtenay-Malabry. Gif-sur-Yvette



Annonce externe ingénieur de recherche en Biotransformation

(Centrale Paris) et l'Ecole supérieure d'électricité (Supélec). CentraleSupélec se compose de 4 campus situés à Châtenay-Malabry (Hauts-de-.

NNT : 2017SACLC050

Th ese de Doctorat de l'Universit e Paris-Saclay Pr epareea CentraleSupelec

Ecole Doctorale n

573(Interfaces)

Approches Interdisciplinaires: Fondements, Applications et

Innovation

Specialite du Doctorat: Informatique

M. Mohammed BOUGAA

Une Approche Basee sur les Processus et Dirigee par les Competences pour l'Education en Ingenierie des Systemes Soutenue a " Cergy-Pontoise ", Le 29 Septembre 2017.

Composition du Jury :

M.Claude LAPORTERapporteur (Pr) Ecole de Technologie Superieure

Montreal, Quebec, Canada

M.Eric LEVRATRapporteur (Pr) Universite de Lorraine

Nancy, France

Mme.Marija JANKOVICExaminatrice (Pr) CentraleSupelec

Presidente du Jury Ch^atenay-Malabry, France

Mme.Odile MORNASExaminatrice (Ing) Thales university

Jouy-en-Josas, France

M.Rory V.O'CONNORExaminateur (Pr) School of Computing

Dublin City University, Ireland

M.Alain RIVIEREDirecteur Institut superieur de mecanique de de These (Pr) Paris, Saint-Ouen, France M.Hubert KADIMACo-Directeur Ecole Int des Sciences et du Traite- de These (Dr) ment de l'Information, Cergy, France M.Stefan BORNHOFENEncadrant Ecole Int des Sciences et du Traite- de These (Dr) ment de l'Information, Cergy, France 1

NNT : 2017SACLC050

PhD Thesis

of Paris-Saclay University

Prepared At CentraleSup

elec

Doctoral school n

573(Interfaces)

Interdisciplinary Approaches: Foundations, Applications and

Innovation

PhD Specialty: Computer Science

M. Mohammed BOUGAA

A Process-Centered and Competency-Driven Approach for

Systems Engineering Education

Defended at " Cergy-Pontoise ", On: September 29th, 2017.

Thesis jury :

M.Claude LAPORTEReviewer (Pr) Ecole de Technologie Superieure

Montreal, Quebec, Canada

M.Eric LEVRATReviewer (Pr) Universite de Lorraine

Nancy, France

Mme.Marija JANKOVICExaminer (Pr) CentraleSupelec

Jury President Ch^atenay-Malabry, France

Mme.Odile MORNASExaminer (Eng) Thales university

Jouy-en-Josas, France

M.Rory V.O'CONNORExaminer (Pr) School of Computing

Dublin City University, Ireland

M.Alain RIVIEREThesis Institut superieur de mecanique de

Director (Pr) Paris, Saint-Ouen, France

M.Hubert KADIMAThesis Ecole Int des Sciences et du Traite- Co-Director (Dr) ment de l'Information, Cergy, France M.Stefan BORNHOFENThesis Ecole Int des Sciences et du Traite- Supervisor (Dr) ment de l'Information, Cergy, France 2 3

Acknowledgment

Firstly, I would like to express my gratitude to my thesis director Prof. Alain RIVIERE for the supervision of this work, for his patience, and orientation, also for providing me with the necessary resources. His guidance helped me all the time of research and writing of this thesis. I thank him especially for trusting me and giving me all the necessary liberty and autonomy while being here to validate my research directions and decisions. Besides my thesis director, I would like to thank my advisor Dr. Stefan BORNHOFEN, for being always here to support me and for the numbered discussions that led to the completion of this work. I thank him for pushing me to ask the right questions, to be sure I'm on the right paths, I also thank him for all his proofreading of my papers and this thesis. My sincere thanks also goes to Prof Samir. LAMOURI and Prof. Samir GARBAYA, who gave me opportunities to exchange with them around this work, their insightful comments and encouragement were very helpful. I also thank Mr. Claude LAPORTE and Mr. Eric LEVRAT for accepting to review this report, and Mrs Marija JANKOVIC, Mrs Odile MORNAS and Mr. Rory V.O'Connor for accepting to be part of the jury of my thesis defense. My sincere thanks also goes to Faida MHENNI,Moncef HAMMADI, Jean Yves CHO- LEY, Alexis FRANCOIS, Antoine LANTHONY, Antoine BRUNNER, and all Supmeca sta, for their help and assistance during this thesis, and especially for facilitating the platform experimentation, without forgetting to thank all my friends and colleagues at EISTI. I also thank all the sta of Interface doctoral school at CentraleSupelec and es- pecially Mrs Suzanne Thuron, who had always been here to respond to my inquiries and questions, I thank her for her professionalism and sense of service. Last but not the least, I would like to thank my family: my parents, my wife, and to my brothers and sister for supporting me spiritually throughout the three years of this thesis and my life in general. I would like to thank my parents for their love, encourage- ment, and support in all my pursuits, and for their faithful support during the nal stages of this Ph.D. And My Sister and Brothers, for their support. Words cannot express how grateful I am to my supportive, encouraging, and patient wife Fatma, in addition to her thesis preparation, and spending her nights taking care of our baby, she always found the time to review my papers, to discuss about the direction i took, ...etc., sometimes, she even appeared understanding my work better than me :). I dedicate this thesis to my adorable daughter, "Nour Filastine", my treasure, who came into the world one year ago to embellish us with happiness and challenges. 4

Abstract

Dealing with today's complex systems requires highly qualied systems engineers. How- ever, in order to be eective as systems engineers, engineering students need practical and real world experiences with such complex systems, in addition to the necessary knowledge in their traditional engineering discipline. In fact, Systems Engineering (SE) education is as much about skills and processes, as it is about knowledge transfer. This makes teach- ing SE a very challenging task where the complexity of the engineered systems has to be considered together with SE complexity itself. Signicant eorts have been made the last two decades in order to deal with this complexity. Attention has been paid to enhance both SE practices and SE education practices. These eorts are provided by organizations using SE, as well as by academic institutions dealing with engineering and SE education. They led to the production of standards, standards documentation, processes assessment models, competency models, competencies assessment resources and more, while improv- ing SE practices within industry and organizations. By organizations we address all the dierent elds, other than industry, where systems engineering is applied, such as govern- ment departments and agencies...etc. In addition, many practical attempts addressed SE education at undergraduate, graduate, post-graduate, and professional levels. This thesis surveys the current practices and advancements in SE education, and concludes that there is no common conventional learning path for this discipline (if we consider it as such). One of our most important nding is that there is no conventional education solution, among academia and industrials/organizations, capable of respond- ing to dierent industry and organization's challenges, for seeking well-trained systems engineers, or specialized engineers with the minimum viable knowledge about the fun- damental principles of SE. A solution that can produce systems engineers with dierent depth levels of expertise, and that should be easily transmissible from a university to another, and from a specic engineering discipline to another. We tried to consider some basic questions such as: what pedagogical model should be used ? what role technology and educators should play in a perfect SE educational environment? which tools should be used? We ended up proposing a novel solution for SE education (an approach with its sup- porting web-based platform). The proposed approach is based on the recommendations of academic and industrial communities. It is centered around the use of SE standardized processes and at the same time very adaptive, with learning scenarios that can be driven by the acquired or to-be-taught SE competencies. The proposed solution is a web based platform that has been developed to support this novel approach within a distant Project Based Learning (PBL) environment. Finally, we put this solution to the test, rstly by questioning a sample of undergraduate students and their educators about this approach and its platform features, and then through another sample of doctoral students using it in the context of an introductory course to systems engineering, within a Project Based Learning (PBL) course. Students using this solution will be able to not only engineer the requested system in a distant and collaborative way, but also to engineer it the right way. The solution aims to ease the learning at the same time of fundamental principles and processes of systems engineering, along with communication, team management, collabo- ration, and related soft skills. On the other hand, educators will be able to better manage their learning scenarios, training resources, and the expected outcomes. Last, educators and students' organizations using this solution will be able to manage and normalize the competencies to be acquired by their future systems engineers at every level. KeywordsSystems Engineering, Systems Engineering Education, Systems Engineering Standards, Project-Based Learning, Lifecycle Model, Competency Models. 5

Resume

Faire face aux systemes complexes d'aujourd'hui necessite des ingenieurs systemes haute- ment qualies. Mais pour ^etre ecace en tant qu'ingenieur systeme, les etudiants en dierentes disciplines d'ingenieries traditionnelles ont besoin d'une experience pratique et reelle dans ce type de systemes complexes, en plus des connaissances theoriques necessaires dans leur discipline. L'education dans le domaine de l'ingenierie des systemes (IS) concerne aussi bien les competences et les processus, que les faits transferables et les connaissances. Cela rend l'education en IS un sujet tres dicile, avec un besoin de considerer a la fois la complexite des systemes a concevoir, ainsi que la complexite et l'abstraction de l'IS dans certains de ses principes fondamentaux. Des eorts considerables ont ete accomplis an d'ameliorer les pratiques de cette discipline et pour faire face a la complexite des systemes actuels et a l'education en IS. Ces eorts sont fournis par les organisations utilisant l'IS et les etablissements universitaires et colleges formant des ingenieurs. Ils ont conduit a la production de normes, de documentations pour ces normes, des modeles d'evaluation des processus, ainsi que des modeles de competences, tout en ameliorant le deploiement et la pratique de cette discipline dans l'industrie. Au cours de cette these, nous avons examine les pratiques actuelles en matiere d'education en IS, et nous avons conclu qu'il n'existe pas de solution d'apprentissage formelle, unique, et adoptee par la communaute pour cette discipline. Une solution capable de repondre aux des de l'industrie, et de produire des ingenieurs systemes bien formes ou des ingenieurs specialises ayant des connaissances minimales viables sur les principes fondamenteaux de l'IS. Une solution qui devrait ^etre facilement transferable d'une universite a une autre, et d'une discipline d'ingenierie a une autre, et qui permet de former des ingenieurs systeme de dierents niveaux d'expertise en largeur et/ou en profondeur sur les principes de l'IS. Nous avons ensuite essaye de prendre en compte quelques aspects de base du domaine de l'education, comme le modele pedagogique qui devrait etre utilise et le r^ole que la technolo- gie et les formateurs devraient jouer dans un environnement ideal d'education en IS. Nous avons ni par proposer une approche novatrice pour former les etudiants sur les principes fondamenteaux de l'IS, independamment de leur discipline technique. Nous avons propose une approche centree sur l'utilisation des processus normalises en IS, tout en faisant en sorte que le scenario d'apprentissage soit tres adaptable et qu'il puisse ^etre pilote par les competences d'IS acquises ou a acquerir. Ensuite, une plateforme Web a ete developpee pour soutenir cette nouvelle approche d'apprentissage. Enn, un echantillon d'etudiants de premier cycle et de leurs formateurs ont ete interroge sur l'utilite et l'ecacite de cette solution, et un autre echantillon de doctorants l'avait experimente dans un cours d'initiation a l'IS, dans le cadre d'un apprentissage par projet (APP). En utilisant cette approche, les etudiants ne seront pas seulement en mesure de bien concevoir le systeme demande de maniere distante et collaborative, mais ils seront aussi ca- pables de l'elaborer de maniere appropriee. Cela leur permettra d'apprendre les principes et processus fondamentaux de l'IS, a mieux communiquer dans un environement de travail, la gestion d'equipe, la collaboration et les competences techniques connexes. Les forma- teurs d'un autre c^ote pourront mieux gerer leur parcours d'apprentissage, les ressources pedagogiques, et les resultats escomptes. En utilisant cette solution, les organisations de ces formateurs et etudiants, c'est-a-dire les universites et colleges, pourront gerer et nor- maliser les competences acquises par leurs futurs ingenieurs systemes a tous les niveaux. Mots-clefsIngenierie des Systemes (IS), Education de l'IS, Normes de l'IS, Apprentis- sage Par Projet, Modele de Cycle de Vie, Modeles de Competences. 6

Contents

1 General introduction 13

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.2 Objectives and main issues . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

1.4 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

2 Systems Thinking and Systems Engineering 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

2.2 Systems thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

2.2.1 What is Systems Thinking . . . . . . . . . . . . . . . . . . . . . . .

20

2.2.2 Holistic systems thinking . . . . . . . . . . . . . . . . . . . . . . . .

21

2.3 Systems Engineering and Systems Thinking . . . . . . . . . . . . . . . . .

22

2.4 Systems engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

2.4.1 System denition . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

2.4.2 Systems engineering denitions . . . . . . . . . . . . . . . . . . . .

23

2.4.3 Domain Engineering vs. Systems Engineering. Is Systems Engi-

neering a discipline? . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Comparison of process (systematic) and skill (systemic) levels . . .

25

2.5 Systems engineering origins and evolution . . . . . . . . . . . . . . . . . .

26

2.6 Systems engineering standards . . . . . . . . . . . . . . . . . . . . . . . . .

28

2.6.1 SE Standards Overview . . . . . . . . . . . . . . . . . . . . . . . .

28

2.6.2 Considered Standards . . . . . . . . . . . . . . . . . . . . . . . . .

30

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

3 SE Competencies and Competency Models 33

3.1 Introduction to SE Competencies and Competency Models . . . . . . . . .

34

3.2 Main Competency Models . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

3.2.1 Defense Acquisition University (DAU), ENG Competency Model

(Formerly SPRDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 NASA Academy of Program/Project and Engineering Leadership

(APPEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 MITRE Institute Systems Engineering Competency Model . . . . .

37

3.2.4 INCOSE UK competency Framework . . . . . . . . . . . . . . . . .

38

3.3 Additional competency models . . . . . . . . . . . . . . . . . . . . . . . . .

41

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41
7

4 Systems Engineering Education 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

4.2 Criteria for successful systems engineers . . . . . . . . . . . . . . . . . . .

45

4.3 Relevant characteristics for eective SE educational environments . . . . .

47

4.4 Project Based Learning and SE educational environments . . . . . . . . . .

51

4.4.1 Inductive Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

4.4.2 Project Based Learning . . . . . . . . . . . . . . . . . . . . . . . . .

51

4.5 Systems Engineering Education - Current Practice . . . . . . . . . . . . . .

53

4.5.1 Long-term programs . . . . . . . . . . . . . . . . . . . . . . . . . .

53

4.5.2 Mid-Term Programs . . . . . . . . . . . . . . . . . . . . . . . . . .

59

4.5.3 Short-Term Programs . . . . . . . . . . . . . . . . . . . . . . . . . .

60

4.5.4 Programs Promoting Systems Engineering Processes . . . . . . . .

61

4.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

5 A Process Centered Adaptive Approach For Systems Engineering Edu-

cation (ProCASEE) 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

5.1.1 Primitive Resources . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

5.1.2 Collaborative Virtual Environment CVE . . . . . . . . . . . . . . .

71

5.1.3 Physical Environment . . . . . . . . . . . . . . . . . . . . . . . . .

73

5.1.4 Learning and Documentation Center . . . . . . . . . . . . . . . . .

74

5.1.5 System elements engineering . . . . . . . . . . . . . . . . . . . . . .

74

5.1.6 Third-party tools and resources . . . . . . . . . . . . . . . . . . . .

74

5.1.7 IoT Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . .

74

5.2 The focus of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75

5.3 Contribution: A Process Centered Adaptive Approach For Systems Engi-

neering Education (ProCASEE) . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Learning scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

5.4.1 Global learning scenario . . . . . . . . . . . . . . . . . . . . . . . .

76

5.4.2 Educator: New project Creation Scenario . . . . . . . . . . . . . .

76

5.4.3 Educator: Processes management scenario . . . . . . . . . . . . . .

77

5.4.4 Student: Project engineering scenario . . . . . . . . . . . . . . . . .

77

5.4.5 Student: Environment adaptation according to system structure . .

78

5.4.6 Virtual 3D representation and the design of a tangible system . . .

78

5.5 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78

5.6 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79

6 A competency-driven approach and competency management system 80

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81

6.2 Most suited SE competency model for SE education . . . . . . . . . . . . .

81

6.3 SE Competencies and standardized processes . . . . . . . . . . . . . . . . .

82

6.4 New Learning scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

6.4.1 Organization new role: Competency model denition . . . . . . . .

84

6.4.2 Educator First new role: Matching processes with competencies . .

84

6.4.3 Educator Second new role: Competency based denition of the sys-

tem lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.4 Competency based students-projects assignments . . . . . . . . . .

86

6.4.5 Student competencies acquisition and verication process . . . . . .

86
8

6.5 Use Case: A way to link the NASA Competency Model to the 29110 pro-

cesses and activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92

7 The Supporting Platform, Experimentation and Results 93

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

7.2 The platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

7.2.1 Organization's features . . . . . . . . . . . . . . . . . . . . . . . . .

94

7.2.2 Educator's features . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

7.2.3 Student's features . . . . . . . . . . . . . . . . . . . . . . . . . . . .

96

7.3 Experimentation and results . . . . . . . . . . . . . . . . . . . . . . . . . .

97

7.4First Plan: Educators and students evaluation of the platform . . . . . .97

7.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97

7.4.2 Respondents prole . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

7.4.3 Results from the students perspective . . . . . . . . . . . . . . . . .

98

7.4.4 Results from the educators perspective . . . . . . . . . . . . . . . .

100

7.5Second Plan: Students experimentation of the solution . . . . . . . . . .102

7.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102

7.5.2 Course Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102

7.5.3 The used tailored systems engineering processes . . . . . . . . . . .

103

7.5.4 The SE knowledge quiz questions . . . . . . . . . . . . . . . . . . .

106

7.5.5 Survey results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108

7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

113

8 General conclusion and Perspectives 114

8.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117

Bibliography 119

Appendices 128

A Appendix: An illustration of relevant features from the proposed solu- tion129 B Appendix: First experimentation plan "Evaluation Surveys" 145 C Appendix: Second experimentation plan "Doctoral training in systems engineering"

Students Experimentation Survey 152

D Appendix: Published Papers 156

9

List of Figures

2.1 Comparison of process (systematic) and skill (systemic) levels [1] . . . . . .

26

2.2 Important dates concerning the origins of systems engineering [2] . . . . .

27

2.3 Breadth and Depth of Leading SE Process Standards [3] . . . . . . . . . .

28

2.4 Current signicant Systems Engineering standards and guides [2] . . . . . .

29

2.5 ISO/IEC/IEEE 15288:2015 System Lifecycle Processes [4] . . . . . . . . .

31

2.6 ISO/IEC TR 29110-6-5-2:2014 architecture . . . . . . . . . . . . . . . . . .

32

3.1 Comparison of INCOSE, DAU and NASA SE Competency[5] . . . . . . . .

41

4.1 Thales University systems engineering training path [6] . . . . . . . . . . .

64

5.1 Our vision for a systems engineering educational environment . . . . . . .

71

5.2 The main components of the Collaborative Virtual Environment . . . . . .

72

5.3 Global Learning Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

5.4 Project Creation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . .

quotesdbs_dbs50.pdfusesText_50
[PDF] centrale supelec nouveau campus

[PDF] centrale tsi 2007 physique corrigé

[PDF] centrale tsi 2010 physique 2 corrigé

[PDF] centrale tsi 2016 physique corrigé

[PDF] centralesupelec

[PDF] centre américain tetouan

[PDF] centre commercial colin petit bourg

[PDF] centre commercial collin's petit bourg

[PDF] centre coréen casablanca

[PDF] centre culturel français alger hydra

[PDF] centre culturel français casablanca prix

[PDF] centre culturel français marrakech

[PDF] centre culturel français meknes

[PDF] centre d'études sur les médias

[PDF] centre d'homologation maroc