[PDF] Exercices de Thermodynamique 2) Le volume molaire cherché





Previous PDF Next PDF



«EXERCICES ET PROBLEMES CORRIGES DE

A. Application du premier principe de la thermodynamique aux gaz parfaits : Exercice I. A. 1. Donner les dimensions de la constante des 



Sans titre

1) Par définition un gaz parfait est un gaz réel pris à basse pression car le volume des = = P. T. P. V . Page 8. - 14 -. Exercices. Exercice 11. 1) Calculer ...



SERIE DEXERCICES N° 22 : BASES DE LA THERMODYNAMIQUE

Gaz réels coefficients thermoélastiques. Exercice 6. Une mole de dioxyde de carbone obéit à l'équation de Van der Waals : ( P + a. V2. ) ( V - b ) = R T . 1 



SERIE DEXERCICES 26 : THERMODYNAMIQUE : DEUXIEME

SERIE D'EXERCICES 26 : THERMODYNAMIQUE : DEUXIEME PRINCIPE. Pression et Calculs d'entropie tables thermodynamiques. Exercice 2 : entropie d'un gaz réel.



Exercices de Thermodynamique

Rép : m → = 261 g et P ≃ 22



Série de TD n°01 Thermodynamique

Écrire l'équation d'état des gaz réels de Van Der Waals. À quelles Exercice 4 : 1. n0 = 0041 mol. 2. 2N2O( ) → 2N2( ). + O2( ). 3. Tableau d'avancement ...



T4 – Appendice 1 DÉTENTES DE JOULE

La DJGL privilégie les variables (TV ) et permet de comparer les comportements de l'énergie interne d'un gaz réel et d'un gaz thermodynamique interne.



PROBL`EMES DE THERMODYNAMIQUE (L3) et leurs corrigés

IX - Entropie statistique d'un gaz réel. Le nombre de micro-états accessibles `a N molécules d'un gaz réel d'énergie interne U occu- pant un volume V est 



Exercices de thermodynamique

Exercice de thermodynamique 1. Transformation isotherme d'un gaz réel. On fait subir à un kilogramme de gaz contenu dans un cylindre muni d'un piston



Exercices de Thermodynamique

Modélisations de gaz réels. T1 §. ¦. ¤. ¥. Ex-T1.4 Dioxyde de carbone. Pour le dioxyde de carbone (« gaz carbonique ») les cœfficients a et b de l'équation 



Sans titre

Exercices. Exercice 3. Le graphe suivant montre la courbe du produit PV d'une mole d'un gaz réel à la température T = 300 K en fonction du logarithme 



SERIE DEXERCICES 26 : THERMODYNAMIQUE : DEUXIEME

c) Conclure. Calculs d'entropie tables thermodynamiques. Exercice 2 : entropie d'un gaz réel. La table thermodynamique ci-contre 



SERIE DEXERCICES N° 22 : BASES DE LA THERMODYNAMIQUE

Gaz réels coefficients thermoélastiques. Exercice 6. Une mole de dioxyde de carbone obéit à l'équation de Van der Waals : ( P +.



PROBL`EMES DE THERMODYNAMIQUE (L3) et leurs corrigés

THERMODYNAMIQUE (L3) comme limite l'équation d'état des gaz parfaits pour les grands volumes. d) Faire le même exercice si l'on se donne.



Résumé de la thermodynamique

15 fév. 2012 Un gaz réel se comporte comme un gaz parfait si la température est suffisamment élevée (et si la densité n'est pas trop grande) : les isothermes ...



«EXERCICES ET PROBLEMES CORRIGES DE

Exercices et problèmes corrigés de thermodynamique chimique A. Application du premier principe de la thermodynamique aux gaz parfaits.



T4 – Appendice 1 DÉTENTES DE JOULE

d'un gaz réel et d'un gaz parfait vis-`a-vis de la pression (2`eme loi de Joule thermodynamiques sont nulles) et qu'on suppose que ni les parois ni le ...



Cycles thermodynamiques des machines thermiques

18 jan. 2011 En 2`eme année : étude de cycles thermodynamiques simples de machines ... de la vapeur d'eau (gaz réel tables



TD 6 : Thermodynamique 1Équation détat dun gaz réel 2 Entropie d

TD 6 : Thermodynamique. 1Équation d'état d'un gaz réel. 1. On mesure expérimentalement la variation de la pression p en fonction du volume V et de la.



[PDF] Exercices de Thermodynamique

1) calculer le nombre de molécules par cm3 dans un gaz parfait `a 27?C sous une pression de 10?6 atmosph`ere 2) Calculer le volume occupé par une mole d'un 



[PDF] «EXERCICES ET PROBLEMES CORRIGES DE

Dans le premier chapitre nous proposons des exercices de connaissances générales sur les gaz parfaits et sur le premier principe de la thermodynamique afin de 



[PDF] PROBL`EMES DE THERMODYNAMIQUE (L2) et leurs corrigés

2?) a) Quelle a été la quantité de chaleur reçue par le thermostat ? Quel aurait été le résultat dans le cas d'un gaz parfait ? Commenter b) Calculer la 



[PDF] SERIE DEXERCICES 26 : THERMODYNAMIQUE - Unisciel

Exercice 2 : entropie d'un gaz réel La table thermodynamique ci-contre donne l'entropie massique s en J K-1 g-1 du dihydrogène dans un certain domaine de 



[PDF] SERIE DEXERCICES N° 22 : BASES DE LA THERMODYNAMIQUE

Gaz réels coefficients thermoélastiques Exercice 6 Une mole de dioxyde de carbone obéit à l'équation de Van der Waals : ( P +



[PDF] Equations détat travail et chaleur

Exercices Exercice 3 Le graphe suivant montre la courbe du produit PV d'une mole d'un gaz réel à la température T = 300 K en fonction du logarithme 



[PDF] Exercices de Thermodynamique

Modélisations de gaz réels T1 Ex-T1 8 Dioxyde de carbone Pour le dioxyde de carbone (« gaz carbonique ») les cœfficients a et b de l'équation d'état de 



[PDF] Série de TD n°01 Thermodynamique

si la température est de 25°C et que la pression reste constante ? Exercice 3 1 Écrire l'équation d'état des gaz parfaits 2 Un ballon sphérique est gonflé 



(PDF) Thermodynamique technique Cours et exercices corrigés

24 sept 2021 · Un dernier chapitre est consacré aux gaz réels vu leur importance dans les processus de transformations d'énergie L'étudiant trouvera à la 



[PDF] Exercices de thermodynamique

25 mar 2014 · Calculer W3 et Q3 Faire le bilan d'entropie sur cette transformation 4 star Dessiner sur un diagramme de Clapeyron les évolutions du gaz

:

Exercices de Thermodynamique

" Ce fut la grande tâche et la grande gloire de la physique du XIX esiècle d"avoir ainsi considérablement précisé et étendu en tous sens notre connais- sance des phénomènes qui se jouent à notre échelle. Non seulement elle a continué à développer la Mécanique, l"Acoustique, l"Optique, toutes ces grandes disciplines de la science classique, mais elle a aussi créé de toutes pièces des sciences nouvelles aux aspects innombrables : la Thermodynamique et la science de l"Électricité. » LouisDe Broglie(1892-1987) -Matière et Lumière, exposés généraux sur la physique contemporaine, 1(1937) ?Syst`emes thermodynamiques T1? Soit une mole d"un gaz occupant une volumeVmsous la pressionPet `a la temp´eratureT.

1)On suppose que ces grandeurs sont li´ees par l"´equation :?

P+a V2m? (Vm-b) =RT, o`ua,b

etRsont des constantes. Utiliser les propri´et´es d"intensivit´e ou d"extensivit´e des grandeurs pour

´etablir l"´equation correspondante relative `anmoles.

2)Mˆeme question pour l"´equation :P(Vm-b) exp?a

RTVm? =RT. On consid`ere du sable fin dont chaque grain occupe un volumeV0= 0,1mm3. Quel est le volume Voccup´e parN= 6.1023grains? Si on ´etendait uniform´ement ce sable sur la France(d"aire S= 550000km2) quelle serait la hauteur de la couche de sable? ?Consid´erations `a l"´echelle microscopique T1? ???Ex-T1.3Vitesse de lib´eration et vitesse quadratique moyenne

1)Calculer num´eriquement `a la surface de la Terre et de la Lune, pour une temp´erature

T= 300K, la vitesse de lib´erationvlet la vitesse quadratique moyenne pour du dihydrog`ene et du diazote. Commenter. Donn´ees :Constante de gravitationG= 6,67.10-11uSI. Rayon terrestreRT= 6,4.106m; masse de la TerreMT= 6.1024kg. Rayon lunaireRL= 1,8.106m; masse de la LuneML= 7,4.1022kg. Masses molaires :M(H2) = 2g.mol-1etM(N2) = 28g.mol-1.

Constante desGP:R= 8,314J.K-1.mol-1.

2)Quel devrait ˆetre l"ordre de grandeur de la temp´eratureTpour que le diazote, constituant

majoritaire de l"atmosph`ere terrestre, ´echappe quantitativement `a l"attraction terrestre? R´ep : 1)Pour l"expression de la vitesse de lib´erationÜCf Cours de M´ecaniqueetDSn05: v l,T?11,2km.s-1etvl,L?2,3km.s-1. de plus :vq(H2)?1,9km.s-1etvq(N2)?0,5km.s-1.

2)Il faudraitTT≂100000K(!)

1)calculer le nombre de mol´ecules parcm3dans un gaz parfait `a 27◦Csous une pression de

10 -6atmosph`ere.

2)Calculer le volume occup´e par une mole d"un gaz parfait `a latemp´erature de 0◦Csous la

pression atmosph´erique normale. En d´eduire l"ordre de grandeur de la distance moyenne entre mol´ecules.

Exercices de Thermodynamique2008-2009

Solution Ex-T1.1

1)CommeVm=Vn, on a :

P+a V2m? (Vm-b) =RT??

P+n2aV2??

Vn-b? =RT? P+n2a V2? (V-nb) =nRT Rq :on peut ´ecrire l"´equation d"´etat sous la forme? P+A V2? (V-B) =nRTen posantB=nb etA=n2a. Best une grandeur extensive puisqu"elle est additive, sin=n1+n2,B=nb=n1n+n2b= B

1+B2.Aest aussi une grandeur extensive, mais elle n"est pas additive car sin2a?=n21a+n22a.

2)P(V-nb)exp?na

RTV? =nRT.

Solution Ex-T1.2

Le volume occup´e estV=N.v= 6.1013m3= 6.1016L(60 millions de milliards de litres!) . Ce sable ´etal´e surS= 5,5.105km2= 5,5.1011m2formerait une couche de hauteurh=V

S?110m

Solution Ex-T1.3

1)D"apr`es l"´equation d"´etat du gaz parfait, le nombre de mol´ecules par unit´e de volume est

n ?=N V=PkBT?10-6.1,01325.1051,38.10-23×300?2,5.1019mol´ecules par m`etre cube soitn??2,5.1013 mol´ecules parcm3ou encoren??4.10-11mol.cm-3.

2)Le volume molaire cherch´e est :Vm=RT

V=8,314×273,151,013.105= 22,4.10-3m3= 22,4L.

?Mod´elisations de gaz r´eelsT1? ???Ex-T1.4Dioxyde de carbone

Pour le dioxyde de carbone (" gaz carbonique »), les coefficientsaetbde l"équation d"état deVan

der Waalsont pour valeurs respectives0,366kg.m5.s-2.mol-2et4,29.10-5m3.mol-1. On place deux moles de ce gaz dans une enceinte de volumeV= 1Là la température deT= 300K.

Q :Comparer les pressions données par les équations d"état du gaz parfait et du gaz deVan der

Waals, la valeur exacte étantP= 38,5bars.

Rép :PGP=nRT

V?4,99.106Pa, soit une erreur relative de?

?P-PGP P? ?≈30%;PVdW= nRTV-nb-n2aV2?3,99.106Pa, soit une erreur relative de? ?P-PVdW P? ?≈4%. Le modèle du gaz parfait est donc inacceptable, tandis que le modèle du gaz deVan der Waalsmontre une bien meilleure précision. ???Ex-T1.5Deux r´ecipients Un récipient(A)de volumeVA= 1L, contient de l"air àtA= 15◦Csous une pressionPA=

72cmHg.

Un autre récipient(B)de volumeVB= 1L, contient également de l"air àtB= 20◦Csous une pressionPB= 45atm.

On réunit(A)et(B)par un tuyau de volume négligeable et on laisse l"équilibre se réaliser à

t= 15◦C. On modélise l"air par un gaz parfait de masse molaireM= 29g.mol-1.Données :le "centimètre de mercure» est défini par la relation1atm= 76cmHg= 1,013.105Pa.

Q :Quelle est la pression finale de l"air dans les récipients? Quelle est la masse d"air qui a été

transférée d"un récipient dans l"autre? Indications :Exprimer, initialement, les quantités de matièrenAetnBdans les récipients. En

déduire la quantité de matière totale. L"état final étant un état d"équilibre thermodynamique,

2http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices de Thermodynamique

les variables intensives sont uniformes, dont la densité moléculaire etla pression. En déduire les

quantités de matière finalesnAFetnBF.

Rép :mB→A= 26,1getP?22,5bars?22,2atm.

???Ex-T1.6Point critique et ´equation r´eduite d"un gaz de Van der Waals (*)

1)Une mole de gaz deVan der Waalsa pour équation d"état :?

P+a V2? (V-b) =RT ExprimerPen fonction deTetVet calculer les dérivées partielles :?∂P ∂V? T et?∂2P∂V2? T

2)Montrer qu"il existe un unique état C tel que :?∂P

∂V? T = 0et?∂2P∂V2? T = 0. Déterminer son volume molaireVC, sa températureTCet sa pressionPC.

3)On poseθ=T

TC,ν=VVCet?=PPC.

Montrer que l"équation d"état liantθ,νet?est universelle, c"est à dire qu"elle ne fait plus

intervenir aucune constante dépendant du gaz.

Rép : 1)?∂P

∂V? T =-RT(V-b)2+2aV3et?∂2P∂V2? T =2RT(V-b)3-6aV4 2)C? V

C= 3b;TC=8a

27Rb;PC=a27b2?

-3)? ?+3ν2? (ν-1) = 8θ ???Ex-T1.7Mod´elisations d"un gaz r´eel (*)

1)Le tableau ci-dessous donne avec trois chiffres significatifs exacts le volume molaireV(en

m

3.mol-1) et l"énergie interne molaireU(enkJ.mol-1) de la vapeur d"eau à la température

t= 500◦Cpour différentes valeurs de la pressionP(enbars). On donne en outre la constante des GP :R= 8,314J.K-1.mol-1.

P110204070100

U56,3356,2356,0855,7755,4754,78

Justifier sans calcul que la vapeur d"eau ne se comporte pas comme unGP. On se propose d"adopter le modèle deVan der Waalspour lequel on a, pour une mole de gaz : P+a V2? (V-b) =RTetU=UGP(T)-aV.

Calculer le coefficientaen utilisant les énergies internes des états àP= 1baret àP= 100bars.

Calculerben utilisant l"équation d"état de l"état àP= 100bars. Quelle valeur obtient-on alors pourUàP= 40bars? Quelle température obtient-on alors en utilisant l"équation d"état avecP= 40barset

V= 1,56.10-3m3.mol-1?

Conclure sur la validité de ce modèle.

2)On réalise une détente isochore (ie à volume constant) d"une mole de vapeur d"eau de l"état

initialI{tI= 500◦C;PI= 100bars}jusqu"à l"état finalF{TF=?;PF= 70bars}. Le tableau ci-dessous donne le volume molaireV(enm3.mol-1) et l"énergie interne molaireU (enkJ.mol-1) de la vapeur d"eau sousP= 70barspour différentes valeurs de la températuret (en ◦C). t300320340360380400

U47,3048,3849,3250,1750,9651,73

Déterminer la température finaleTFet la variation d"énergie interneΔU=UF-UI. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/3

Exercices de Thermodynamique2008-2009

Rép : 1)UH2O(g)ne vérifie pas la première loi deJoule:H2O(g)ne se comporte pas comme un gaz parfait. Modélisation deVdW:a= 9,23.10-1J.m-3.mol-1etb= 8,2.10-5m3.mol-1.

2)TF= 599KetΔU=UF-UI=-6,1kJ.mol-1.

?Coefficients thermo´elastiques et phases condens´ees T1?quotesdbs_dbs7.pdfusesText_5
[PDF] qcm transports membranaires

[PDF] mesure et intégration - licence - 10 examens corrigés

[PDF] mesure et intégration examens corrigés

[PDF] vecteur gaussien centré

[PDF] matrice de variance et covariance exercice corrigé

[PDF] exercice microéconomie consommateur

[PDF] exercice aire et périmètre 3eme

[PDF] exercices corrigés arithmétique 3eme

[PDF] relations interspécifiques exercices

[PDF] relations interspécifiques exemples

[PDF] exercice sur les facteurs biotiques

[PDF] démontrer que deux triangles sont isométriques

[PDF] triangles isométriques démonstrations

[PDF] triangles isométriques exercices corrigés

[PDF] figures isométriques et semblables exercices