[PDF] Fonctions : symétries et translations





Previous PDF Next PDF



MATHÉMATIQUES 1 S

santes pour une présentation efficace du programme de première S. des équations des droites et reconnaissance de l'équation de l'hyperbole.).



Fonctions : symétries et translations

27 févr. 2017 6. 3.3 Des représentations déduites par symétrie . ... f est une fonction homographique (hyperbole). • f(x) = e?x.



ficall.pdf

Soient R et S des relations. Donner la négation de R ? S. [000104]. Exercice 2. Démontrer que (1 = 2) ? (2 = 3). Correction ?. [000105]. Exercice 3.



LYCEE GEORGES DE LA TOUR - NANCY Liste des manuels

7 juil. 2015 HYPERBOLE - 1ère S - 2011. 2011. NATHAN. Calculatrice graphique programmable obligatoire (type casio GRAPH 35+). ISBN : 978-2-09-172494-2.



Les figures de style

Un 1er exercice sur les figures de styles prises dans La Boîte à Merveilles ; L'hyperbole : Elle exprime une idée ou un sentiment de façon exagérée.



FONCTIONS DE REFERENCE

Démontrer que la fonction f définie sur R par f (x) = x2 ? 8x + 3 est strictement croissante sur l'intervalle 4;+????? . Soit a et b deux nombres réels 



Titre II

La 1ère variation : ?U / ?X = 10 7



MATHÉMATIQUES.

Une hyperbole s'il est obtus. 1er Cas. Faites un triangle rectangle S AD rectangle en A



Corrigés des exercices Objectif Bac

c) La première conjecture émise est donc fausse. Cela s'explique quand on calcule une valeur approchée de f( )a qui vaut – 0002. Cette valeur est donc 



Première S - Extremums dune fonction

est le minimum de sur D si et seulement si pour tout de. D et s'il existe un réel dans D tel que . • On appelle extremum de sur D son maximum ou son 



Hyperbole 1re (2019) - Site compagnon Editions Nathan

Retrouvez ici toutes les ressources liées au manuel Hyperbole 1re : fichiers Algo et Tice fiches de remédiation module de calcul mental livre du professeur 



Hyperbole 1re - Manuel numérique enseignant - 9782091193632

Le manuel numérique enseignant Hyperbole 1re (édition 2019) contient l'intégralité des ressources + Le livre du professeur directement accessible en PDF



Livre de Maths 1ere Es Hyperbole PDF Mathématiques - Scribd

maths 1ere s pdf exercices corrigés maths seconde pdf academie en lignecorrigé [PDF] eBooks Hyperbole Livre De Maths 1ere S Corrige Raise Libraryapi 



Hyperbole 1re - 2019 / Elève - CNS

Le manuel numérique élève Hyperbole 1re (édition 2019) reprend l'intégralité du manuel papier enrichi de ressources multimédias adaptées aux élèves



LIVRE DE MATHS 1ERE ES HYPERBOLE - PDF Free Download

page 1 / 6 page 2 / 6 livre de maths 1ere pdf exercices corrigés de mathématiques EXERCICES CORRIGES HYPERBOLE MATHEMATIQUE 1ERE S Exercice corrigé 



hyperbole mathematique 1ere s Exercices Corriges PDF

hyperbole mathematique 1ere s Exercices Corriges PDF math 1ere s bordas en pdf 20 sources ebooks gratuit corrige hachette 1ere s en



Hyperbole 1ere nathan Exercices Corriges PDF

russe livre 1 exercices corriges hyperbole 1re s this is formula - exercices corriges hyperbole 1er s nathan bing free pdf files 1ere s corrige pdf  



Hyperbole 1re - Enseignement de spécialité - cours sur mCourser

Le module de mathématiques Hyperbole 1re propose des QCM et des Vrai/Faux couvrant l'intégralité du programme Un outil idéal pour se tester et évaluer 



livres ebooks gratuits hyperbole au format pdf

mathematiques seconde hyperbole for free LIVRE DE MATHEMATIQUES SECONDE hyperbole livre de maths 1ere s corrige download or access hyperbole livre de



Td corrigé Hyperbole 1ere s 2015 nathan

hyperbole 1re s livre de l l ve 9782091724942 - existe aussi en format exercices corriges hyperbole mathematique 1ere s transmath 1ere s corrige pdf

:
Fonctions : symétries et translations DERNIÈRE IMPRESSION LE27 février 2017 à 16:06

Fonctions : symétries et

translations

Table des matières

1 Définition2

1.1 Fonction numérique. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Ensemble de définition. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Comparaison de fonctions. . . . . . . . . . . . . . . . . . . . . . . . 2

2 Parité d"une fonction4

2.1 Fonction Paire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Fonction impaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Autres symétries5

3.1 Symétrie par rapport à un axe vertical. . . . . . . . . . . . . . . . . 5

3.2 Symétrie par rapport à un point. . . . . . . . . . . . . . . . . . . . . 6

3.3 Des représentations déduites par symétrie. . . . . . . . . . . . . . . 7

4 Translation9

4.1 Translations horizontales. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Translations verticales. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. DÉFINITION

1 Définition

1.1 Fonction numérique

Définition 1 :Unefonctionnumériquefd"unevariableréellexestunerelation qui à un nombre réelxassocie un unique nombre réelynotéf(x). On écrit alors : f:RouDf-→R x?-→f(x) ?Il faut faire la différence entre la fonctionfqui représente une relation etf(x) qui représente l"image dexparfqui est un nombre réel.

Exemple ::

•f(x) =3x-7fest une fonction affine (droite)

•f(x) =5x2-2x+1fest une fonction du second degré (parabole) •f(x) =x+22x-3fest une fonction homographique (hyperbole) •f(x) =e-x2fonction de Gauss (courbe en cloche)

1.2 Ensemble de définition

Définition 2 :L"ensemble définition d"une fonctionfest l"ensemble des va- leurs de la variablexpour lesquelles la fonction est définie

Exemple :

•Soit la fonctionfdéfinie parf(x) =⎷4-xa pour ensemble de définition : D f=]-∞; 4](4-x?0) •Soit la fonctiongdéfinie parg(x) =3x2-5x-6a pour ensemble de défini- tion :Dg=R-{-1 ; 6}(x2-5x-6?=0,x=-1 racine évidente) •Soit la fonctionhdéfinie parh(x) =ln(x+1)a pour ensemble de définition D h=]-1 ;+∞[(x+1>0)

1.3 Comparaison de fonctions

Définition 3 :On dit que deux fonctionfetgsont égales si et seulement si : •Elles ont même ensemble de définition :Df=Dg

•Pour toutx?Df,f(x) =g(x)

PAUL MILAN2VERS LE SUPÉRIEUR

1. DÉFINITION

Exemple :Les fonctionfetgdéfinies ci-dessous, sont-elles égales? f(x) =? x-1 x+3etg(x) =⎷ x-1⎷x+3

Déterminons leur ensemble de définition :

•Pourf, on doit avoir :x-1x+3?0, d"oùDf=]-∞;-3[?[1 ;+∞[ •Pourg, on doit avoir :x-1?0 etx+3>0, d"oùDg= [1 ;+∞[ •On a donc :Df?=Dg. Les fonction ne sont donc pas égales. ?On remarquera cependant que sur[1 ;+∞[, on af(x) =g(x) Définition 4 :Soit I un intervalle et soitfetgdeux fonctions définies sur I.

On dit que sur I :

•f?g? ?x?I,f(x)?g(x).

•f?0? ?x?I,f(x)?0.

•festmajorée? ?M?R,?x?I,f(x)?M.

•festminorée? ?m?R,?x?I,m?f(x).

•festbornée? ?m,M?R,?x?I,m?f(x)?M.

Remarque :La relation d"ordre pour les fonctions n"est pas totale car deux fonc- tions ne sont pas toujours comparables. Soit les fonctionsfetgdéfinies surRpar :f(x) =xetg(x) =x2. On a par exemple : 1

2>?12?

2 ?f?12? >g?12? et 2<22?f(2)Exemple : •Soit la fonctionfdéfinie surRpar :f(x) =x(1-x). Démontrer quefest majorée surR.

On met la fonction sous la forme canonique :

f(x) =-x2+x=-(x2-x) =-? x-1 2? 2 +14 La parabole représentantfest tournée vers le bas et de sommet S?1 2;14?

La fonctionfest donc majorée par1

4. •Montrer que la fonctiongdéfinie surRparg(x) =4sinx-3 est bornée.

On a pour toutx?R:

-1?sinx?1? -4?4sinx?4? -7?4sinx-3?1? -7?g(x)?1 gest donc bornée par[-7 ; 1].

PAUL MILAN3VERS LE SUPÉRIEUR

2. PARITÉ D"UNE FONCTION

M fmajorée m fminorée M m fbornée Propriété 1 :Sifune fonction est monotone sur un intervalle I= [a;b]alors fest bornée. Démonstration :Supposons quefest croissante sur[a;b](le casfdécrois- sante se traite de façon analogue). Soitx?[a;b], i.e.a?x?b, commefest croissante, elle conserve la relation d"ordre, d"oùf(a)?f(x)?f(b). On peut prendrem=f(a)etM=f(b),fest donc bornée.

2 Parité d"une fonction

2.1 Fonction Paire

Définition 5 :On dit qu"une fonctionfest paire surDfssi l"on a : •Son ensemble de définitionDfest symétrique par rapport à l"origine.

•?x?Df,f(-x) =f(x)

Exemple :Les fonctions suivantes sont paires sur leur ensemble de définition: f

1(x) =x2,f2(x) =5x4+3x2-1,f3(x) =cosx,f4(x) =sinx

x,f5(x) =e-x2 Remarque :Le terme " pair » doit son nom au fait que les fonctions polynômes qui ne contiennent que des termes de puissances paires vérifient :f(-x) =f(x)

Propriété 2 :La représentation

d"une fonction paire estsymétrique par rapport à l"axe des ordonnées. ??x -x f(-x) =f(x)MM"O

PAUL MILAN4VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

2.2 Fonction impaire

Définition 6 :On dit qu"un fonctionfest impaire si et seulement si l"on a : •Son ensemble de définitionDfest symétrique par rapport à l"origine.

•?x?Df,f(-x) =-f(x)

Exemples :

Les fonctions suivantes sont impaire sur leur ensemble de définition : f

1(x) =x3,f2(x) =sinx,f3(x) =tanx,f(x)4=1

x,f5(x) =4x3-3x Remarque :Le terme " impair » doit son nom au fait que les fonctions po- lynômes qui ne contiennent que des termes de puissances impaires vérifient : f(-x) =-f(x)

Propriété 3 :La représentation

d"une fonction impaire estsymétrique par rapport à l"origine. x -x f(x)f(-x) MM" O

3 Autres symétries

3.1 Symétrie par rapport à un axe vertical

Théorème 1 :Soit A(a; 0)dans le repère(O,?ı,??). Si un point M a pour coordonnées(x;y)dans un repère(O,?ı,??)et(X;Y)dans un repère(A,?ı,??), alors, on a les relations :?X=x-a Y=y SoitCfla courbe de la fonctionfdans le repère(O,?ı,??). La courbeCfest symé- trique par rapport à l"axex=asi et seulement si la fonctiongdont la courbe estCfdans le repère(A,?ı,??)est paire.

Remarque :On peut aussi montrer quef(a+x) =f(a-x)

PAUL MILAN5VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

Exemple :Soit la fonctionfdéfinie surRparf(x) =x2-2x-1. Montrer queCfest symétrique par rapport à l"axex=1.

On change de repère passant de

(O,?ı,??)à(A,?ı,??). On a les relations suivantes : ?X=x-1

Y=f(x)?

x=X+1 g(X) = (X+1)2-2(X+1)-1 ?x=X+1 g(X) =X2+2X+1-2X-2-1? x=X+1 g(X) =X2-2 1 -1 -21 2 3-1? x X=x-1 x=1 A M Comme la fonction carrée est paire, la fonctiongest paire et donc la courbeCfest symétrique par rapport à la droitey=1. Remarque :Autre méthode :f(1+x) =f(1-x)en effet : f(1+x) = (1+x)2-2(1+x)-1=1+2x+x2-2-2x-1=x2-2 f(1-x) = (1-x)2-2(1-x)-1=1-2x+x2-2+2x-1=x2-2

3.2 Symétrie par rapport à un point

Théorème 2 :Soit I(a;b)dans le repère(O,?ı,??). Si un point M a pour coordonnées(x;y)dans un repère(O,?ı,??)et(X;Y)dans un repère(I,?ı,??), alors, on a les relations?X=x-a Y=y-b SoitCfla courbe de la fonctionfdans le repère(O,?ı,??). La courbeCfest symé- trique par rapport au point I(a;b)si et seulement si la fonctiongdont la courbe estCfdans le repère(I,?ı,??)est impaire. Remarque :On peut aussi montrer quef(a+x) +f(a-x) =2b Exemple :Soit la fonctionfdéfinie surR-{-1}tel quef(x) =2x-1x+1. Montrer queCfest symétrique par rapport au point I(-1 ; 2).

On change de repère passant de

(O,?ı,??)à(I,?ı,??). On a les relations suivantes :

PAUL MILAN6VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

?X=x+1

Y=f(x)-2????x=X-1

g(X) =2(X-1)-1

X-1+1-2????x=X-1

g(X) =2X-3X-2 ?x=X-1 g(X) =2X-3-2X

X????x=X-1

g(X) =-3X Comme la fonction inverse est impaire, la fonctiongest impaire et donc la courbe deCfest symétrique par rapport au point I.

Remarque :Autre méthode :

f(-1+x) +f(-1-x)

2(-1+x)

-1+x+1+2(-1-x)-1-x+1 -2+2x x--2-2xx =4=2×2246 -22 4-2-4 x

X=x+1yY=y-2MIM"

O

3.3 Des représentations déduites par symétrie

Soit la fonctionfdéfinie surRparf(x) =x3-3x2+1 représentée ci-dessous.

1) Déduire les courbes des fonctionsg,

hetkdéfinies surRpar : a)g(x) =-f(x) b)h(x) =|f(x)| c)k(x) =f(-x)

2) On définie surRla fonctionFpar :

F(x) =f(|x|).

a) Démontrer que la fonctionFest paire b) En déduire la représentation deF 12 -1 -2 -3 -41 2 3-1-2 Cf O 1) a)

PAUL MILAN7VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

La courbeCgest l"image deCfpar

lasymétrie par rapport à l"axe des abscisses. 123
-1 -2 -3 -41 2 3-1-2 CfCg O b) On déduit la courbeChen faisant une symétrie par rapport

àl"axedesabscissesuniquement

lorsquef(x)<0. 123
-1 -2 -31 2 3-1-2 O Cf Ch c) La courbeCkest l"image deCfpar lasymétrie par rapport à l"axe des ordonnées. 123
-1 -2 -31 2 3-1-2-3 O CfCk

2) a) On a pour toutxréel :F(-x) =f(| -x|) =f(|x|) =F(x)

La fonctionFest donc paire.

b) On déduit la courbeCFde la courbe C fen faisant une symétrie par rap- port à l"axe des ordonnées unique- ment six<0 123
-1 -2 -31 2 3-1-2-3 O Cf CF

PAUL MILAN8VERS LE SUPÉRIEUR

4. TRANSLATION

4 Translation

Théorème 3 :Soit une fonctionfdéfinie sur un intervalleI. SoitCfsa courbe représentative. Soit les les fonctiongeth, les fonctions définie respectivement surJetItel queJ est l"intervalle I décalé vers la droite deapar : g(x) =f(x-a)eth(x) =f(x) +b a ?ıetb??de la courbeCf

4.1 Translations horizontales

12 -1 -2 -3 -41 2 3 4 5-1-22?ı CfCg O f(x) =x3-3x2+1 g(x) =f(x-2)=(x-2)3-3(x-2)2+1 12 -1 -2 -31 2 3 4 5-1-2-3-3?ıCf Cg O f(x) =lnx Df=]0 ;+∞[ g(x) =f(x+3)=ln(x+3)Dg=]-3 ;+∞[

4.2 Translations verticales

1234
-1 -2 -31 2 3-1-2 2?? Cf Cg O f(x) =x3-3x2+1 g(x) =f(x) +2=x3-3x2+3 12 -1 -2 -3 -41 2 3 4 5-1-2-3 -3?? Cf Cg O f(x) =lnx Df=]0 ;+∞[ g(x) =f(x)-3=lnx+3Dg=]0 ;+∞[

PAUL MILAN9VERS LE SUPÉRIEUR

quotesdbs_dbs33.pdfusesText_39
[PDF] implantation d'une courbe circulaire

[PDF] la fille aux yeux d'or

[PDF] livre de maths seconde hyperbole en ligne

[PDF] calcul de gisement en topographie pdf

[PDF] la duchesse de langeais

[PDF] mission apollo spe physique

[PDF] mission apollo xiv correction

[PDF] exemple vision d'entreprise

[PDF] mission entreprise exemple

[PDF] valeurs d'entreprise exemple

[PDF] valeurs fondamentales d'une entreprise

[PDF] exercice raccordement dessin technique

[PDF] les opérations de maintien de la paix de l'onu en afrique

[PDF] doctrine capstone 2008

[PDF] opérations de maintien de la paix en cours