[PDF] Chapitre 7 - Trigonométrie et angles orientés





Previous PDF Next PDF



Somme des angles

Classe de seconde - Mathématiques. Somme des angles dans une configuration particulièrement simple (triangle rectangle angle droit facilement.



Module 7. Angle inscrit et angle au centre

Déterminer la mesure des angles inscrits et semi-inscrits dans une circonférence à l'aide de théorèmes et de relations entre les cordes et les arcs sur une 







36 ANGLES INSCRITS

Fascicule MATHEMATIQUES – 3ème v10.17. Fascicule GRATUIT offert par le projet ADEM Dakar financé par l'AFD -. 36. ANGLES INSCRITS. Exercice 1.



Somme des angles

Tests de positionnement. Classe de seconde. Mathématiques eduscol.education.fr. Général. Technologique. Professionnel. Lycée. Somme des angles.



Angles inscrits et angles au centre interceptant un même arc de

3) Angle au centre et angle inscrit interceptant un même arc : Exercice : A ) Reproduire ce pentagone régulier en prenant 6 cm de rayon. b) Trouver 2 angles 



LIVRE DU PROFESSEUR

Collection de Mathématiques. LIVRE DU PROFESSEUR. 2nde Cargo 2de S – Livre du Professeur. – 5 –. 1 Angles inscrits et polygones inscriptibles.



DOMAINES DES SCIENCES PROGRAMME EDUCATIFS ET GUIDE

Mathématiques 2nde C. Page 0 sur 33 Angles inscrits ; Angles orientés et trigonométrie Géométrie analytique du plan



Exercices corrigés sur le cercle trigonométrique - Math seconde

Déterminer les mesures principales des angles suivants en radians : 39?. 23. . 43?. 27.

Chapitre7

Trigonométrieetanglesorientés

7.1Cerc letrigonométriqueetmesu red'angle

Définition7.1.1.Unce rcletrigonométrique Cestuncer clederay on1surleq uelnousdistingueron s deuxsensdep arcours: •les ensdirectlor squelecercleestparcou rudanslesensinversedesaigui llesd'un emontre; •les ensindirect lorsquelecercleestparcouruda nslesensdesai guillesd'unemontre. Remarque.Lesmes uressuivantesseron tutilesparlasuite:lalong ueurd'uncerclevaut2π,celle dude mi-cerclevautdoncπetcel led'unqua rtdecerclevaut 2 Lecer cletrigono métriquepermetd'introduireunenouvelleunitédemesured'angles:leradian. Définition7.1.2.Lera dian,notérad,estlamesured'unangleaucentrequiinterceptesurle cercleCuna rcdelongue ur1. Remarque.Ilya une rel ationdepr oportionnalitéentrelesd egrése tlesradians.Eneffet,nous savonsquelarela tionsuivan teestvé rifiée

360de gréséquivautà2πrad( lalongueurd ucercletrigonométrique)

C'estpourquo inousavonsletableausuiv ant:

Degrés360d

Radian2πr

Ceta bleaudeproportionnal iténou sfournitlarelationsuivante180×r=d×2πquiper metde convertirdesdegrésenradian etvice-ver sa. Lesv aleursremarquablessui vantessontàconnaitre

Degrés030456090120135150180

Radian0

6 4 3 2 2π 3 3π 4 5π 6 57

58CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

7.2Anglé orientéd'uncoup ledevecteurs

Nousallons voirqu'ilestpossi bled'orienter leplanetd'utiliserlecercletrigo nométri quepour associerlamesured'unangle entrede uxvecteursnonnul s.Aceteffet,soi ent uet vdeuxvect eurs nonnuls. Apartirducentr eOduce rcletrigonométriqueC,ilexistedeuxpointsduplanMetN telsque OM= uet ON= v Depl us,observonsque lesdemi-droites[OM)et[ON)coupentlecercleendespointsAetB.La longueurl,surlecercleC,entrelespointsAetBvape rmettrededéfinirlamesuredel 'angle associéauxvecteurs uet v.

Définition7.2.1.Danslec ontexte précédent,lafamilledes nombresréelsl+2kπ,aveck∈Z,est

unemesur edel'angleorien té( u, v). Remarque.Dema nièreinformelle,lenom brekindiquelenombredet our (ducercletrigonomét rique) quiaété fai t.Enprati que,nousallonss ouvent confondreunangleavecl 'unedesesmes ures.Notons aussiquel'ordre desvecteu rs uet vestimpo rtant.Eneffet,si( u, v)=lalors( v, u)=2π-l.

7.2.1Mesure principaled'unangl eorientédevecteurs

Certainsmesuressontplu ssimplesàutiliserque d'autres. Définition7.2.2.Parmilesmesur esl+2kπ,aveck∈Z,d'unangleorienté( u, v),ilenexiste uneetune seuleap partena ntàl'interva lleI=]-π;π].Cettemesures'appellelamesureprincipale de( u, v). Remarque.Lava leurabsoluedelam esureprincipaled'unang lecoïnci deavecl'anglegéométrique définiparle sdeuxvec teurs uet "toursdecercle»:si( u, v)=lalorstoute slesautresmesuresd ecetangles ontdelaforme l+2kπaveck∈Z

Voyonscequenous obteno nssurdeux exemples.

Exemple7.2.1.1.Su pposonsque(

u, v)= 37
6

πetdét erminonslamesureprincipaledecet

angleorienté. Pourcela,ilsuffitd'observerque

37π

6

6×6+1

6

π=(6+

1 6 6 +3×2π; lame sureprincipaleestdonc 6

2.De manières imilaire,si(

u, v)=

202π

3 nousavons

202π

3

67×3+1

3 3 +67π;
ici,ilfau tpo ursuivreunpeu noscalculsafindefaireapparaitreunmult iplede2πàlaplace de6 7π.Celas'effectuedelama nièresu ivante

67π=68π-π,

7.3.FON CTIONCOSINUSETSINUSD'UNAN GLEORIENTÉ59

ainsi 3 +67π=
3 +68π-π=-
2π 3 +34×2π.Lamesureprincipalevautdonc-
2π 3 etl 'angle géométriqueassociéapourmesure 2π 3 2π 3

7.2.2Proprié tésdesanglesorientés

Voiciquelque spropriétésdesanglesori entés,celles-cis'obtiennentgrâceàducalculvecto riel.

uet vdeuxvecteu rsnonnuls.Alors •direque uet vsontcoliné airesetdemêmesensestéquivalentà( u, v)=0; •direque uet vsontcoliné airesetdesensopposéestéquivalentà( u, v)=π Remarque.Ceré sultatdonneuneautrefaço ndeprouverquetr oispoints sontaligné soudemontrer quedesd roitesson tparallèles. Unerel ationdeChaslesexisteéga lemen tpourlesanglesorientés.

Proposition24(RelationdeChasles).Soient

u, vet wdesvect eursnonnuls,alors u, v)+( v, w)=( u, w) Remarque.Encons équencedecetterelationdeChasles,n ousavo nslesrelationssuivantes: v, u)=-( u, v);( u,- v)=( u, v)+π;(- u, v)=( u, v)+π;(- u,- v)=( u, v) Iles tégalemen timportantd'observerquelas ubstitutiond'unvect eurparunautrevecteur coli- néaire,demêmesens,n'affectepasl emesuredel 'angle orienté.Par exemple (2 u, v)=( u, v);( u,3 v)=( u, v);(2 u,3 v)=( u, v)

7.3Foncti oncosinusetsinusd 'unangleorienté

Pourintro duirecesnouvellesfonctions,il estimport antdeseplacerdansunrepèreorthonormé (O;I;J)direct;si i= OIet j=

OJcecisi gnifieque

i∥=∥ j∥=1et ( i, j)= 2 Définition7.3.1.Dansunt elcadr e,àtoutpo intsMappartenantaucercletrigonomét riq ueCde •nousnotero nsθunemes uredel'angleorie nté( OI, OM); •leco sinusdeθ,notécos(θ),correspondraàl'abscissedupointM; •lesi nusdeθ,notésin(θ),correspondraàl'ordonnéedupointM.

60CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

OO II JJ MM cos(θ) sin(θ) Voyonsquelquesp ropriétésdecesnouvelles fonctions.Toutd'abord,ilestimportantdecalculer quelquesvaleursrema rquablesdecesfonctions .

7.3.FON CTIONCOSINUSETSINUSD'UNAN GLEORIENTÉ61

x y 0 30
60
90
120
150
180
210
240
270
300
330
360
6 4 3 2 2π 3 3π 4 5π 6 7π 6 5π 4 4π 3 3π 2 5π 3 7π 4

11π

6 2π 3 2 1 2 2 2 2 2 1 2 3 2 3 2 1 2 2 2 2 2 1 2 3 2 3 2 1 2 2 2 2 2 1 2 3 2 3 2 1 2 2 2 2 2 1 2 3 2 (-1,0)(1,0) (0,-1) (0,1) Surla figurepréc édente,l'a bscissedechaquepointfournilavaleurducosinusdel'anglecor- respondantetl'ordonnéelavale urdus inus.Parexemple,lepointM( 1 2 3 2 )permetdesavoir que cos 3 1 2 etsi n 3 3 2

62CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

Iles tessentie lderetenirlesvaleurssuivan tes.

θ(enradi ans)0

6 4 3 2 cos(θ)1 3 2 2 2 1 2 0 sin(θ)0 1 2 2 2 3 2 1

Lesau tresvaleurspeuventêt reretrouvéesdemanière élémentaireàl'aided'a rgu mentsgéomé-

triquesquenousallon sdécrire ci-dessous.

7.3.1Propri étésdesfonctionstrigonométriques

Proposition25.Pourtoutx∈Retto utk∈Zlesid entitéssuivantessontsatis faites •cos 2 (x)+sin 2 (x)=1.

Voicilespropr iétésgéom étriquesdontnousparlionsplus tôt.Ile nexist eencored 'autresmais

nousneles abo rderonspasdans cecours.

Proposition26.Pourtoutré elx,nousavons

•(Relationentrelesdeux)sin 2 -x =cos(x)etcos 2 -x =sin(x). Atoutefinutilementionnonségalementlesformulesd'additionssuivant es:

Proposition27.Soienta,bdeuxréelsal ors

7.4Equati onstrigonométriques

Enfin,pourconclu recechapitre ,ilfaudrarésoudredeséq uationsdelaform e cos(x)=uousi n(x)=uavecu∈[-1;1] Autrementdit,lorsqueuestunev aleurdonnée, ilfauttrouverl' ensembledesréelsxsatisfaisant leséqua tionsprécédentes.Pourrés oudre,cecinousavonslerésultatsuivant

7.4.EQUA TIONSTRIGONOMÉTRIQUES63

Remarque.Enprat iquepourrésoudrecos(x)=uilfa udrad'abordtrouvera∈Rtelquec os(a)=u

pourensuit eappliquerlerésultat précédent.Cegenred'équationsseratrèsim portantl'anné e

prochainelorsquevousét udierezlesnombrescompl exes.

64CHAPITRE7.TRIGONOMÉTR IEETANG LESORIENTÉS

quotesdbs_dbs50.pdfusesText_50
[PDF] Angles 3ème Mathématiques

[PDF] Angles 5ème Mathématiques

[PDF] Angles 6ème Mathématiques

[PDF] angles 5ème exercices PDF Cours,Exercices ,Examens

[PDF] angles adjacents complémentaires et supplémentaires exercices PDF Cours,Exercices ,Examens

[PDF] angles alternes internes et correspondants PDF Cours,Exercices ,Examens

[PDF] angles alternes internes et correspondants exercices PDF Cours,Exercices ,Examens

[PDF] angles alternes internes exercices corrigés PDF Cours,Exercices ,Examens

[PDF] angles alternes internes pdf PDF Cours,Exercices ,Examens

[PDF] Angles alternes, internes, correspondants 5ème Mathématiques

[PDF] Angles associé trigonométrie géo 1ère Mathématiques

[PDF] Angles associés 1ere s 1ère Mathématiques

[PDF] Angles associés ? simplifier 1ère Mathématiques

[PDF] angles associés trigonométrie PDF Cours,Exercices ,Examens

[PDF] angles au centre et angles inscrits 3ème Mathématiques