[PDF] 82 exercices de mathématiques pour 2nde





Previous PDF Next PDF



TD dexercices de Géométrie dans lespace.

2) a) Calculer le volume de la pyramide SABCD. Page 6. TD Géométrie espace (http://www.math93.com/gestclasse/classes/troisieme 



DNB - Brevet des Collèges 2018 Amérique Nord - 5 juin 2018

5 juin 2018 d'astuces consultez la page dédiée de math93.com : présenter une copie



Mathématiques

Il importe donc tout particulièrement que la géométrie dans l'espace soit abordée tôt dans l'année scolaire. L'utilisation d'un logiciel de visualisation et 



82 exercices de mathématiques pour 2nde

4 oct. 2015 IX Géométrie dans l'espace . ... À chaque énoncé d'exercices vous pouvez cliquer sur le numéro de la ... Exercices d'application du cours.



DNB - Brevet des Collèges 2018 Asie - 25 juin 2018 - Correction

25 juin 2018 Pour plus de précisions et d'astuces consultez la page dédiée de math93.com : présenter une copie



épreuve de spécialité - session 2021

Baccalauréat Général Épreuve d'enseignement de spécialité D. H. E. G. I. F. J. Dans tout l'exercice l'espace est rapporté au repère orthonormé (A ; # ».



Applications de lalgèbre et de lanalyse à la géométrie

13 janv. 2011 Annexe I. Étude d'une clothoïde (sous forme d'exercice corrigé) ... matlab qui permettront d'illustrer certains points du cours ou du TD.



Sujet et corrigé mathématiques bac s obligatoire

https://www.freemaths.fr/corriges-par-theme/bac-s-mathematiques-antilles-guyane-2018-obligatoire-corrige-exercice-4-suites.pdf



Corrigé du baccalauréat S Asie 18 juin 2019

18 juin 2019 Le but de cet exercice est d'étudier le refroidissement du café en ... La suite (un) est géométrique de raison q = 0



BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2021

par le terme général d'une suite géométrique. 2. Quelle est la nature de la série. ? n?1 n! nn ? Corrigé exercice 6. 1. Par hypothèse : ? ? > 0 

4 octobre 2015

82 exercicesde

mathématiques pour2 ndeStéphane PASQUET i

Sommaire

Disponible surhttp://www.mathweb.fr4 octobre 2015

I Calculs & ordres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

I.1 Calculs divers

1 I.2 Simplification d"une racine carrée particulière 1

I.3 Simplification de radicaux

2

I.4 Expressions conjuguées

2

I.5 Union et intersection d"intervalles

2

I.6 Calcul sur les puissances (avec des lettres)

3

I.7 Compilation

3 II Coordonnées de points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

II.1 Lecture de coordonnées de points

11

II.2 Lecture de coordonnées

11

II.3 Calcul de longueurs

12 III Factorisations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

III.1 Avec facteur commun évident

15

III.2 En faisant apparaître le facteur commun

15

III.3 À l"aide des identités remarquables

15

III.4 À l"aide d"une identité remarquable

16 IV Équations & inéquations. . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

IV.1 Équations diverses

20

IV.2 Équations avec carrés

20

IV.3 Équations avec racines carrées

20

IV.4 Dans un triangle équilatéral

21

IV.5 Inéquations diverses

21

IV.6 Dans le jardin

21
V Fonctions : généralités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 V.1 Reconnaître la courbe représentative d"une fonction 35

V.2 Tableau de valeurs à la calculatrice

35

V.3 Appartenance de points à une courbe

36

V.4 Images et antécédents

36

V.5 Établir une expression d"une fonction

37

V.6 Lectures graphiques

38

V.7 Lectures graphiques

38

V.8 Lectures graphiques

39
ii

V.9 Triangle équilatéral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

VI Équation de droites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

VI.1 À partir d"un graphique

50

VI.2 À partir des coordonnées de points

50

VI.3 Appartenance de points à une droite

50
VI.4 Intersection de deux droites - Vecteur directeur 51

VI.5 Une histoire d"aire

51

VI.6 Les taxis

52
VII Fonctions du second degré. . . . . . . . . . . . . . . . . . . . . . . . . . . .57

VII.1 Forme canonique & factorisation

57

VII.2 Sens de variation

57
VII.3 Aire d"un triangle dans un triangle équilatéral 57
VIII Vecteurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

VIII.1 Placement de points

63

VIII.2 Placement de points & alignement de points

63

VIII.3 Relation de Chasles

63

VIII.4 Égalités de vecteurs

64

VIII.5 Exprimer un vecteur en fonction d"un autre

64
VIII.6 Construction de points, égalité vectorielle 64

VIII.7 Alignement de points

64
VIII.8 Dans un repère, trouver des coordonnées 64
VIII.9 Alignement de points & nature d"un triangle 65
VIII.10 Milieu, centre de gravité, points alignés 65

VIII.11 Distance & milieu

65
VIII.12 Triangles équilatéraux et points alignés 66
VIII.13 Dans un repère, trouver des coordonnées 66

VIII.14 Exercice récapitulatif

66
IX Géométrie dans l"espace. . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

IX.1 Tétraèdre & parallélogramme

78

IX.2 Cube & section

78

IX.3 Parallélépipède, distance & volume

78

IX.4 Cube, distance, volume & aire

79

IX.5 Droites & plans parallèles et sécants

79

IX.6 Cube et angle au centre

80

IX.7 Pyramide et intersection

81

IX.8 Construction d"un cube et d"une pyramide

81
X Statistiques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 X.1 Caractères discrets : moyenne, e.c.c. et médiane 89

X.2 Moyenne, e.c.c. & médiane avec classes

89

X.3 Calcul d"effectifs, diagramme en barres

90

X.4 Calculs avec classes

90

X.5 Salaires dans une entreprise

90
iii XI Probabilités. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

XI.1 QCM

97

XI.2 Lancer de deux dés équilibrés

97

XI.3 Réunion et intersection

98

XI.4 Avec un dé portant des lettres

98

XI.5 Changement d"univers

98

XI.6 Chez les profs de math

99

XI.7 Le digicode

100

XI.8 Dans un magasin

100

XI.9 Dans un sac

100

XII Fluctuations et

échantillonnage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

XII.1 Le dé d"Al

109

XII.2 Le Dédale

109

XII.3 Influence de la taille d"un échantillon

109

XII.4 Recherche de la taille d"un échantillon

1 10

XII.5 Effet placebo

110

XII.6 Fourchette de sondage

110
XIII Algorithmique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

XIII.1 Laboratoire pharmaceutique

113

XIII.2 Le site marchand

114
iv

Règles de navigation

Disponible surhttp://www.mathweb.fr4 octobre 2015

Bonjour.

J"ai souhaité créé ici un document dans lequel il est facile de naviguer. C"est la raison pour

laquelle :

•À chaque énoncé d"exercices, vous pouvez cliquer sur le numéro de la page où se trouve

le corrigé pour vous y rendre directement; •À tout moment, vous pouvez retourner au sommaire en cliquant sur le petit carréqui se trouve devant chaque titre.

D"autre part, il se peut que quelques erreurs se soient glissées dans les énoncés ou corrections;

si vous avez un doute, n"hésitez pas à me contacter via le formulaire qui se trouve sur mon site (http://www.mathweb.fr/contact.html) afin d"aboutir à un document tendant vers la perfection... Je vous remercie par avance et vous souhaite un bon travail!

Stéphane Pasquet

v

Compilation L

ATEX2εde ce

documentDisponible surhttp://www.mathweb.fr4 octobre 2015

Ce document repose sur l"extension personnelle :

•pas-exos.sty disponible gratuitement sur la page : de mon site.

Il a été initialement rédigé sous Ubuntu, mais dernièrement compilé sous Windows 10.

vi

Énoncés

Calculs & ordres

Disponible surhttp://www.mathweb.frAExercices d"application du cours

RExercices de réflexion

4 octobre 2015

Exercice 1. Calculs diversHIIIIA

Corrigé page

4

Effectuer et simplifier les calculs suivants :

A=1 +12

2-237 3-13

B=(6×10-2)2×32×10-43

3×1012

C=⎷3-⎷2⎷3 +

⎷2

D=⎷343-10⎷112 +

⎷7

E=⎷7⎷3

×⎷126⎷12

F=Ê48

243

×⎷405

121

G=€

⎷5-⎷3

Š2⎷5 +

⎷3 Exercice 2. Simplification d"une racine carrée particulièreHHHHHR

Corrigé page

5

On souhaite simplifier l"écriture du nombre :

A=È29 + 12

⎷5.1Première approche. On suppose queApeut s"écrire sous la formea+b⎷5. a.Développer€a+b⎷5

Š2.

b.Écrire le système d"équations (non nécessairement linéaire) auquel on arrive si l"on

veut que€a+b⎷5

Š2=A2.

c.Est-il facile de résoudre ce dernier système?2Seconde approche. a.Développer€3 + 2⎷5

Š2.

b.En déduire une écriture deAsous la formea+b⎷5.3Revenons sur la première méthode.

On considère la fonctionfdéfinie par :

f(x) =x4-29x2+ 36. 1 a.Vérifier quex= 3est une solution de l"équationf(x) = 0. b.En déduire la valeur deadans l"égalitéA=a+b⎷5, puis à l"aide la question 1.c., trouverb.

Exercice 3. Simplification de radicauxHHHHHR

Corrigé page

6

1On pose :A=È4-⎷7 +

È4 +

⎷7. a.CalculerA2.

b.En déduire une écriture plus simple pourA.2D"une façon analogue, simplifier les radicaux suivants :

a.

B =È11-⎷21 +

È11 +

⎷21 b.

C =È8-⎷15-È8 +

⎷15 c.

D =È6 +

⎷11-È6 + ⎷11

3a.On poseZ=È76 + 42

⎷3etX= 7 + 3⎷3. Après avoir calculéX2, donner une écriture simplifiée deZ. b.On poseZ=È179-20⎷2etX= 2-5⎷7. Après avoir calculéX2, donner une écriture simplifiée deZ. c.On poseZ=È13 + 4 ⎷3etX= 1 + 2⎷3. Après avoir calculéX2, donner une écriture simplifiée deZ.

Exercice 4. Expressions conjuguéesHHHIIA

Corrigé page

8 Utiliser les expressions conjuguées pour simplifier les expressions suivantes :

1A=2⎷7-⎷5

2B=3-2⎷5

3 + 2 ⎷5

3C=1 + 2⎷2

3-⎷2

4D=5-7⎷5

3 + 2 ⎷5

5E=8-⎷11

7-2⎷11

Exercice 5. Union et intersection d"intervallesHIIIIA

Corrigé page

9 Pour chacun des intervallesIetJsuivants, donnez l"intersectionI∩Jet l"unionI?J. 2

1I= [-3;5]etJ= [-4;2]2I= [-2;0[etJ= ]-3;-1]3I= ]-∞;0[etJ= ]0;+∞[4I= [-4;5[etJ= ]-5;6[

Exercice 6. Calcul sur les puissances (avec des lettres)HHIIIA

Corrigé page

10 Simplifier les calculs suivants en les mettant sous la formeanbmcp, oùn,metpsont des entiers relatifs.1(a2b-3)-2c5a -1b6c-22(a8b-2c-1)2a

3b5c-33a

5b

2÷h(a-1b5)-2c-3i-2"

a2(b-1c-3)2—2

Exercice 7. CompilationHHHIIA

Corrigé page

10

Effectuer les calculs suivants :

1A=54

׀12

-13 Š5 4

×825

-12

2B=3×105×15×10-29×1073C=13

+14 -151 6 +17 14 +25

2×2013

1 +

356F=π6

π2 +π3 Š5 9 -12

7G=1,5×104+ 8,01×1052×1038H=12

-13 +16 -381 2 +23
-16 +18 9I=17 +34
-1161 7 -34 +316

10J=32

׀14

-25 Š3 4 -18 3

Corrigés

4 octobre 2015

Corrigé de l"exercice 1.

A=1 +12

2-237 3-13 22
+1214
7 -237 -13 32-97

×83

3 -79

×84

3

A=-289

B=(6×10-2)2×32×10-43

3×1012

62×10-2×2×32×10-43

3×1012

62×323

3×10-4×10-410

12 363

×10-810

12 = 12×10-8-12

B= 12×10-20C=⎷3-⎷2⎷3 +

⎷2 ⎷3-⎷2

Š€⎷3-⎷2

⎷3 + ⎷2

Š€⎷3-⎷2

⎷3

2-2⎷3×⎷2 +

⎷2

2⎷3

2-⎷2

2

3-2⎷6 + 2

3-2

C= 5-2⎷6D=⎷343-10⎷112 +

⎷7 =⎷7×49-10⎷7×16 +⎷7 =⎷7×72-10⎷4

2+⎷7

= 7⎷7-10×4⎷7 + ⎷7

D=-32⎷7

E=⎷7⎷3

×⎷126⎷12

quotesdbs_dbs22.pdfusesText_28
[PDF] Limitation desdébitsd 'eauxpluvialesen - AgroParisTech

[PDF] referentiel indemnisation - Oniam

[PDF] Petit cours pour comprendre la notion de degré de liberté en

[PDF] CHAPITRE XIII : Les circuits ? courant alternatif : déphasage - IIHE

[PDF] La fonction exponentielle - Lycée d 'Adultes

[PDF] le temps de travail - CIG Versailles

[PDF] Formules de calcul des agrégats de la comptabilité nationale - 9alami

[PDF] CHAPITRE 6 : LES ESCALIERS

[PDF] 1 Gérer la paie (p 5)

[PDF] Outil 1 Indicateurs RH et d 'activité - MDEF

[PDF] puissances exercices

[PDF] Statistiques - Académie en ligne

[PDF] Situer une année dans son siècle et son millénaire

[PDF] Calcul des structures - Cel - Hal

[PDF] Dimensionnement beton armé d 'un immeuble R+5 - BEEP-IRD