[PDF] Chapitre 2 : Energie potentielle électrique. Potentiel électrique





Previous PDF Next PDF



Chapitre 2 : Energie potentielle électrique. Potentiel électrique

Chapitre 2 : Energie potentielle électrique. a) Variation de l'énergie mécanique d'une charge déplacée dans un champ électrique uniforme.



Sans titre

LP 104. Chapitre 2. Energie mécanique - Dynamique. 1/55. 2 DYNAMIQUE ET ÉNERGIES EN MÉCANIQUE. Le cours de LP104 est consacré entre autres



Bilans macroscopiques Chap.2 – Bilans dénergie

Intro : On étudie ici les bilans d'énergie mécanique puis les thermodynamiques (énergie et entropie) lorsque les frottements et les aspects thermiques 



Chap 2 Energie cinétique

Interprétation : La bille s'enfonce dans le sable car la bille possède de l'énergie de mouvement appelée ENERGIE. CINETIQUE. La bille possède au départ une 





I – Obtention dénergie électrique sans combustion

Ens. Sc. Tale – Thème 2 - CHAPITRE 2 : LES ATOUTS DE L'ELECTRICITE. L'énergie électrique présente de nombreux avantages : une distribution aisée 



Chapitre 2 : léchelle des longueurs

Le travail mécanique d'une force est l'ENERGIE fournie au système qui la subit lorsqu'il se déplace. 1.2. Travail d'une force constante.



Chapitre 3.1a – Le travail et lénergie cinétique - loi de Newton

L'énergie est introduite en 1845 par le physicien britannique James. Prescott Joule et représente une grandeur physique constante en tout temps pour un système 



2 BILAN DE MATIÈRE ET ÉNERGIE 2.1 Introduction 2.1.1 Définition

1P003 – Chapitre 2 – Bilans - Bernoulli. 1/22. 2 BILAN DE MATIÈRE ET ÉNERGIE On veut déterminer la variation d'énergie mécanique du système.



Chapitre 2 :Quantification de lénergie de latome dhydrogène

Niels Bohr a posé deux affirmations : Postulat mécanique : L'électron de l'atome d'hydrogène ne possède qu'un nombre limité d'états accessibles.

2e BC 2 Energie potentielle électrique. Potentiel électrique 12

Chapitre 2 : Energie potentielle électrique.

Potentiel électrique

1. Travail de la force électrique

a) Expression mathématique dans le cas du déplacement d'une charge positive Une charge q > 0 est transportée de A vers B dans le champ uniforme d'un condensateur plan.

(Pour que ce déplacement se fasse il faut bien sûr qu'il y ait des forces extérieures appropriées

qui agissent sur q !).

Considérons le repère d'axe Ox (parallèle au champ électrique E et orienté dans le sens

opposé à E).

A = point initial = point de départ ;

B = point final = point d'arrivée.

Le champ E est constant. La force électrique F qE est donc constante au cours du déplacement, donc son travail W(F) est indépendant du chemin suivi. A C i f

W(F) F AB

F AB cos

qE AB cos qE AC qE x x qE x x qE x b) Expression mathématique dans le cas du déplacement d'une charge négative A C i f

W(F) F AB

F AB cos

q E AB cos q E AB cos qE AB cos car q q 0 qE AC qE x x qE x x qE x

2e BC 2 Energie potentielle électrique. Potentiel électrique 13

c) Conclusion L'expression mathématique du travail de la force électrique F s'exerçant sur une charge q quelconque dans un champ électrique uniforme E s'écrit :

W(F) qE x

où l'axe Ox est parallèle au champ électrique et dirigé dans le sens opposé au vecteur E.

d) Analogie avec le travail du poids

W(P) mg z et W(F) qE x

g est l'intensité du champ de pesanteur ; E est l'intensité du champ électrique. Oz est parallèle à g, et de sens contraire; Ox est parallèle à E, et de sens contraire. Le poids P s'exerce sur la masse m ; la force électrique F s'exerce sur la charge q. Attention : m est toujours > 0, mais q peut être > 0 ou < 0 !

2. Energie potentielle d'une charge q placée dans un champ électrique

uniforme a) Variation de l'énergie mécanique d'une charge déplacée dans un champ électrique uniforme Considérons une charge q > 0 déplacée (à vitesse constante) par une force d'un opérateur de la plaque négative d'un condensateur chargé vers la plaque positive. * Système : charge q dans le champ

électrique E (ce qui revient à englober le

condensateur dans le système : la force

électrique est donc une force intérieure

au système) * Forces extérieures :

Force de l'opérateur opF opposée à la

force électrique F: opF F

Le poids de la charge est négligé.

On suppose que l'espace entre les plaques est vide d'air de sorte qu'il n'y a pas de force de frottement.

2e BC 2 Energie potentielle électrique. Potentiel électrique 14

* Variation de l'énergie mécanique du système : Forces extérieuresE W op BE W(F ) W(F) qE x qEx 0 (q > 0) L'énergie acquise s'appelle énergie potentielle électrique. b) Conclusions : Energie potentielle électrique d'une charge

1. L'énergie potentielle électrique d'une charge q quelconque située en un point d'abscisse x

dans un champ électrique uniforme E, vaut : pélectE qEx Elle dépend du niveau de référence choisi !

2. La variation de l'énergie potentielle électrique d'une charge q quelconque dans un champ

électrique uniforme E vaut :

p électE qE x W(F) Elle est indépendante du niveau de référence choisi. c) Remarques

1. En A: x = 0 Ep élect = qExA = 0 (minimum)

Le niveau de référence pour l'énergie potentielle électrique est sur la plaque négative.

2. En C: x = xC (maximum) Ep élect = qExC (maximum)

3: L'axe Ox est toujours parallèle à E et orienté dans le sens opposé à E. L'origine O

détermine le niveau de référence.

4: Pour q < 0, la formule est la même:

En A Ep élect = 0 (maximum); en B Ep élect = qExB < 0; en C Ep élect = qExC < 0 (minimum)

2e BC 2 Energie potentielle électrique. Potentiel électrique 15

3. Potentiel électrique

a) Définition

Le potentiel V d'un point d'un point du champ est égal à l'énergie potentielle Ep élect que

posséderait une charge témoin de +1 C placée en ce point. p électEVq Cette définition est valable pour un champ électrique quelconque. b) Unité S.I. pour le potentiel électrique : le volt (V) Si Ep élect = 1 J et si q = 1 C, alors V = 1 J/C = 1 volt = 1 V c) Potentiel d'un point d'un champ uniforme Comme pélectE qEx, le potentiel d'un point d'abscisse x s'écrit: V Ex V ne dépend que de la position du point et du champ électrique. d) Nouvelle unité pour l'intensité du champ électrique E : le volt/mètre Dans un champ uniforme VEx: si V = 1 V, et si x = 1 m, alors E = 1 V/m

Montrer que 1 V/m = 1 N/C

e) Nouvelle expression pour l'énergie potentielle électrique pélectE qV f) Nouvelle unité pour l'énergie : l'électron-volt Si q = e = 1,610-19 C, et si V = 1 V, alors Ep élect = 1 eV = 1 électron-volt

1 eV = 1 e1 V = 1,610-19 C1 V = 1,610-19 J

g) Remarque Dans un champ uniforme, l'axe Ox est dirigé toujours dans le sens des potentiels croissants.

2e BC 2 Energie potentielle électrique. Potentiel électrique 16

4. Différence de potentiel électrique = tension électrique

a) Définitions Lorsqu'une charge se déplace d'un point initial A de potentiel Vi = VA vers un point final B de

potentiel Vf = VB, alors la différence de potentiel entre le point final et le point initial est :

f iV V V Une différence de potentiel est encore appelée tension électrique. La tension entre A et B est notée : AB A BU V V

On a évidemment : BA B A ABU V V U

Souvent une parle de la tension électrique aux bornes d'un appareil électrique : il s'agit alors de la différence de potentiel prise positivement : U V 0 .

Sur les schémas, les tensions sont représentées par des flèches allant du potentiel moins

élevé vers le potentiel plus élevé.

b) Nouvelle expression pour le travail de la force électrique

Dans un champ uniforme :

f i f i

W(F) qE x

qE(x x ) q(Ex Ex )

W(F) q V

(Formule importante à retenir !) Nous admettons que cette expression est valable également dans des champs non uniformes. c) Relation entre tension aux bornes d'un condensateur et distance entre les plaques

Appliquons la relation V=Ex aux

points A et B :

VA = 0 et VB = Ed

Finalement : U = Ed

(Formule importante à retenir !)

2e BC 2 Energie potentielle électrique. Potentiel électrique 17

5. Application du théorème de l'énergie mécanique et du théorème de

l'énergie cinétique * L'énergie mécanique totale d'une charge q placée dans un champ électrique est la somme de son énergie cinétique et de son énergie potentielle électrique :

E = Ec + Ep élect 21E mv qV2

* Si une charge évolue spontanément dans un champ électrique (sans autre force que celle du champ électrique), on peut déterminer sa vitesse acquise au bout d'un certain déplacement soit à l'aide du théorème de l'énergie mécanique : E = 0 (Système = charge dans le champ électrique ; pas de force extérieure au système) ; soit à l'aide du théorème de l'énergie cinétique : cE q V (Système = charge seule ; force électrique = force extérieure).

Voir exercices !

2e BC 2 Energie potentielle électrique. Potentiel électrique 18

Exercice supplémentaire

A. Une particule (noyau d'hélium), produite par une source radioactive, est émise au voisinage du point A avec une vitesse initiale négligeable. a) Quelle tension UAB = U faut-il appliquer entre les plaques distantes de D = 20 cm, pour que la vitesse des particules en B soit v = 103 km/s ? (1,03104 V) b) Calculer la vitesse des particules à mi-chemin entre A et B. (7,07105 m/s) c) Donner les caractéristiques du champ électrique E entre les plaques. (5,16104 V/m) d) Quelle est en J, puis en eV, l'énergie cinétique d'une particule en B ? (3,3010-15 J ;

2,06104 eV)

e) Calculer le potentiel d'un point situé à 5 cm, à 12 cm, à 18 cm de la plaque A. Calculer

l'énergie potentielle d'une particule en ces points. (5 cm: 7,74103 V ; 1,55104 eV)

On donne : q = 2e = 3,210-19 C

m = 6,610-27 kg B. Même exercice avec des électrons ayant en A une vitesse initiale de 6,6107 m/s dirigée vers la plaque B.

On donne : qélectron = e = 1,610-19 C

mélectron = 9,110-31 kg

Réponses :

a) 1,24104 V ; b) 4,67107 m/s ; c) 6,19104 V/m ; d) 4,5510-19 J ; 2,84 eV ; e) 5 cm: 9,29103 V ; 9,29103 eVquotesdbs_dbs22.pdfusesText_28
[PDF] grille de sélection des travailleurs qualifiés

[PDF] Rappels de seconde : vocabulaire

[PDF] Correction Déterminer un âge en utilisant la - SVT en Terminale S

[PDF] ECE : Détermination de l 'indice de réfraction de l 'eau - Sciences

[PDF] Noyau et nuage électronique

[PDF] Sous-adressage et CIDR - DEPARTEMENT INFORMATIQUE IUT Aix

[PDF] Seconde - Distance entre deux points du plan - Parfenoff

[PDF] Mesurer des distances avec wwwmapsgooglefr

[PDF] MESURE DU RETARD ET DE LA CELERITE D 'UNE ONDE

[PDF] 1 Calculs statistiques dans Excel: moyenne et écart type Entrée des

[PDF] 31 calculer des effectifs cumulés

[PDF] Seconde - Méthodes - Traduction algébrique des extremums d 'une

[PDF] Les conseils et connaissances physio utiles pour le STEP 11 - Lyon

[PDF] Fiche : mesure d 'un indice de réfraction avec le réfractomètre d 'Abbe

[PDF] Indice des Prix ? la Consommation - HCP