[PDF] [PDF] chapitre 3 : congruences et arithmétique modulaire





Previous PDF Next PDF



Chapitre 3 : Structure et codification de linformation - AlloSchool

Méthode de la lettre de contrôle « MODULO 23 » 23. 2- Codification technologique : La codification technologique appelée codage ... Calcul de la clé.



Division modulo et clefs de contrôle

La clef la plus simple consiste `a calculer le code n modulo un chiffre k. Par exemple si la clef se calcule modulo 6



La codification

2. La méthode du MODULO 23. Il faut diviser le code par 23. Le reste de la division correspond à une lettre de l'alphabet qui sera la clé de contrôle.



Exo7 - Cours de mathématiques

Les calculs de cryptage se feront modulo n. On a bien 0 ? 23 < 34 (sinon c'est que l'on n'a pas été assez loin dans les calculs).



Cryptographie

On note /26 l'ensemble de tous les éléments de modulo 26. Et maintenant sans calculs : 133 + 64 ? 3 + 12 ? 15 (mod 26). ... 11 23 22 19.



Sans titre

Calculer le reste de la division euclidienne de 211 par 23. Un entier w non multiple de 23 est un générateur multiplicatif modulo 23 si et seule-.



CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE

On dit que a est congru à b modulo m si m divise a ? b. carré modulo p pour p = 3 7



Cours de mathématiques - Exo7

Pour un entier n fixé programmer le calcul de la somme Sn = 13 + 23 + 33 + ··· + n3. Division euclidienne et reste



Untitled

utiliserons également pour calculer le nombre de solutions modulo p d'une équation le symbole de Legendre (23) soit défini donc que 143 soit premier.



Exo7 - Exercices de mathématiques

23 104.05 Trigonométrie Calculer le module et l'argument de (1+i)n. ... Montrer que pour chaque entier positif n 49 divise 23n+3 ?7n?8. [000278].



[PDF] Chapitre 3 : Structure et codification de linformation - AlloSchool

Méthode de la lettre de contrôle « MODULO 23 » Pour obtenir la clé de contrôle Le code est divisé par 23 Le reste correspond à une lettre de prise dans



[PDF] chapitre 3 : congruences et arithmétique modulaire

Congruences Définition 1 1 Soit m a b entiers On dit que a est congru à b modulo m si m divise a ? b (On dit aussi que “a et b sont congrus modulo m” 



[PDF] Corrigé TD3

1 mod p que pour O



[PDF] Division modulo et clefs de contrôle

La clef la plus simple consiste `a calculer le code n modulo un chiffre k Par exemple si la clef se calcule modulo 6 le code 4518 a pour clef 0 et on le note 





[PDF] Arithmétique modulaire

Travailler avec le dernier chiffre (modulo 10) est une méthode pour vérifier (partielle- ment) un calcul Aussi regarder la parité des nombres peut être 



[PDF] [PDF] Arithmétique - Exo7 - Cours de mathématiques

Les calculs de cryptage se feront modulo n • Le décodage fonctionne grâce à une 23 dividende diviseur quotient reste Démonstration Existence



arithmétique - congruence dans Z Modulo [n] - maths expertes

arithmétique - congruence dans Z Modulo [n] - maths expertes Comment calculer avec les congruences expliqué en vidéo • Règles de calcul avec les 



[PDF] Arithmétique

Il devient alors possible de raisonner et de calculer sur les La classe d'équivalence d'un angle par la relation de congruence modulo 2? est l'angle lui 



[PDF] Concepts de base en arithmétique

http://www animath fr/IMG/ pdf /cours-arith1 pdf 23571113171923293137414347 Exemple d'application : soit à calculer 21000 modulo 7

:
CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE

1.Congruences

Définition 1.1.Soitm;a;bentiers. On dit queaest congru àbmodulomsimdiviseab. (On dit aussi que "aetbsont congrus modulom".) En symboles ab(modm)()mjab() 9k2Zavecab=kn. Par exemple on a28 (mod 3)car3divise28 =6. On aa0 (mod 2)si et seulement si2divisea0 =a, c"est à dire ssiaest pair. On aa1 (mod 2)ssi il existek aveca1 = 2ket donca= 2k+ 1est impair. Similairement on a a2 (mod 5)()a= 5k+ 2aveckentier, a1 (mod 4)()a= 4k+ 1aveckentier, a3 (mod 4)()a= 4k+ 3aveckentier.

Surtout on aa0 (modn)()a=nkaveckentier.()aest un multiple denQuelques propriétés de la congruence

Théorème 1.2.Soita;b;c;a0;b0;nentiers. Les énoncés suivants sont vrais : (a) (Reflexivité)aa(modn). (b) (Symétrie)ab(modn)impliqueba(modn). (c) (Transitivité)ab; bc(modn)impliqueac(modn). (d)aa0; bb0(modn)impliqueaa0bb0(modn). (e)aa0; bb0(modn)impliqueaa0bb0(modn). (f)Sidest un diviseur commun dea,betn, alorsab(modn)impliquead bd (modnd (g)Siddivisen, alorsab(modn)impliqueab(modd). Donc les règles de manipulation des congruences contiennent la plupart des règles de ma-

nipulations d"égalités entre entiers pour l"addition, la soustraction, et la multiplication. Mais

pour la division (et la simplification des congruences), c"est plus compliqué. Exemple :216et310 (mod 7)impliquent231610et donc6160 (mod 7).

Preuve.(a)aa= 0 = 0n.

(b)ab=kn=)ba=kn. (c)ab=kn; bc=`n=)ac= (ab) + (bc) = (k+`)n. (d) Laissée comme exercice. (e)aa0=kn; bb0=`n=)aba0b0=aba0b+a0ba0b0= (aa0)b+a0(bb0) = (kb+a0`)n. (f) Laissée comme exercice. (g) Sidjnetnjab, alorsdjab. Théorème 1.3.Soientnetaentiers avecn1. Alorsaest congru modulonà exactement un des nombres0;1;2;:::;n1. 26
CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE 27 Donc chaque entier est congru à0ou1modulo2, mais pas aux deux. Chaque entier est congru à0,1ou2modulo3, mais pas à plus qu"un parmi les trois. Etc. Preuve.Par la division euclidienne, on peut écrirea=qn+ravecq;rentiers et0r n1. Etar(modn)car leur différence estqn. Doncaest congru à un des nombres

0;1;2;:::;n1.

Supposons maintenant queaest congrus à deux nombresretsparmi0;1;:::;n1. Par symétrie et transitivitéretssont aussi congrus, et il existekentier avecrs=kn. Or on a0r < netn Commekest entier, on ak= 0etr=s.

2.Les congruencesaxb(modn).

On cherche les solutionsxde congruences commes7x11 (mod 31)et en généralaxb (modn). On considère d"abord le cas oùaetnsont premiers entre eux, comme7et31. Théorème 2.1.Siaetnsont premiers entre eux, alors il existe une solutionxdeaxb (modn), et c"est unique modulon. Existence.On cherche une relation de Bezout7u+ 31v=1par l"algorithme d"Euclide

étendu.+++

a i423 u i317310 7p i014931 +31q
i10127 On trouve31279 =1. Modulo31, on a310, donc cela devient791 (mod 31). On multiplie par11donnant791179911 (mod 31), et on réduit modulo31par la division euclidienne99 = 331+6. Donc996et7611 (mod 31). Finalement pour tout x6 (mod 31)on aura aussi7x11 (mod 31). A noter que dans la relation de Bezout on utilise le numérateur9et le dénominateur2de l"avant-dernière réduite de 317
, avecsignes opposés. La même méthode marche pour toute congruenceaxb(modn)tant queaetnsont premiers entre eux. Unicité.En général, siaetnsont premiers entre eux, et on aaxbetayb(modn), alors on aaxay(modn)par transitivité, et doncaxay0eta(xy)0 (modn). Doncndivisea(xy). Maisaetnsont premiers entre eux. Donc par le lemme de Gauss,n doit diviserxy, et doncxetysont congrus modulon.

Le cas oùaetnnon premiers entre eux.

Théorème 2.2.Il existe une solutionxdeaxb(modn)si et seulement sid= pgcd(a;n) diviseb. La solutionxest unique modulond La condition queddivisebest nécessaire, c"est à dire, si la congruence a une solution, alors ddiviseb. En effet, si on aaxb(modn), alors il existekentier avecaxb=knet b=axkn. Commeddiviseaetn, il divise aussiaxkn=b. La condition queddivisebest suffisante aussi, c"est à dire, siddiviseb, alors la congruence a une solution. En effet, siddiviseb, alors en appliquant l"algorithme d"Euclide étendu àn

28 CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE

eta, on trouveu= (1)NpN1etv= (1)N1qN1avecau+vn=d. Cela donneaud (modn). En multipliant parbd on trouvera(ubd )b(modn).

La congruenceaxb(modn)est équivalente àad

xbd (modnd )avecad etnd premiers entre eux. Comme les solutions de cette dernière congruence sont uniques modulo nd , les solutions deaxb(modn)sont uniques modulond aussi.

Deux exemples :

(1) Dans la congruence36x80 (mod 90), on apgcd(36;90) = 18, mais18ne divise pas

80. Donc il n"y a pas de solution.

(2) Pour résoudre125x275 (mod 450), on applique l"algorithme d"Euclide étendu à450 et125+++ a i3112 u i4501257550250 125p
i0134718 +450q
i101125 On trouve125(7)+4502 = 25, et donc125(7)25 (mod 450). Maintenant on multiplie par 27525
= 11, donnant125(77)275 (mod 450). La solution est unique modulo45025 = 18, donc la solution estx 77 (mod 18)ou bienx13 (mod 18).

3.Le théorème chinois

Le théorème chinois.Soitmetndes entiers premiers entre eux. Alors quelque soitaet bentiers il existe des solutions simultanées dexa(modm)etxb(modn), et cette solutionxest unique modulomn. Unicité.Soitxune solution simultanée des deux congruences, et soityun deuxième entier. Alorsyest aussi une solution des deux congruences ssi on axy(modm)etxy (modn). Alorsmjxyetnjxy, ce qui équivaut à ce queppcm(m;n)jxyouxy (mod ppcm(m;n)). Mais commemetnsont premiers entre eux, on appcm(m;n) =mn. Doncyest aussi une solution des deux congruences ssixy(modmn). Existence.On cherche une relation de Bezoutmu+nv= 1. Alors on anv= 1muet mu= 1nv. Il s"ensuit qu"on a nv1 (modm); mu0 (modm);nv0 (modn); mu1 (modn): Il s"ensuit que si on prendx=anv+bmuon a bienxa1 +b0a(modm)et xa0 +b1b(modn). Faisons un exemple. Cherchons lesxavecx11 (mod 18)etx25 (mod 77). On cherche une relation de Bezout18u+ 55v= 1.++++ a i43112 u i771853210 18p i01413173077 +77q
i10134718 On a1830+77(7) = 1avecu= 30etv=7. La solution estx1177(7)+251830

7571. Comme on a1877 = 1386, les solutions sontx7571641 (mod 1386).

CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE 29 Quandmetnne sont pas premiers entre eux, on a le théorème suivant. Théorème 3.1.Soitmetnentiers naturels, etd= pgcd(m;n). Alors il existe une solution simultanéexdexa(modm)etxb(modn)si et seulement si on aab(modd). La solutionxest unique moduloppcm(m;n). Existence.Soity=xa. On chercheyvérifianty0 (modm)etyba(modn). Par le lemme de Bezout il existeuetvavecmu+nv=d. On a doncmu0 (modm)etmud (modn). Comme on aab(modd), le nombrebad est entier. On prendy=mubad et donc x=a+mubad comme solutions. Unicité.Similaire au cas oùmetnsont premiers entre eux.

4.Systèmes de représentants modulon

Définition 4.1.Une famille denentiersa1;:::;antelle que tout entier est congru à modulo nà exactement un desaiestun système de représentants modulon. Donc0;1;2;3;4est un système de représentants modulo5. On peut substituer5pour0, car ils sont congrus modulo5, et1;2;3;4;5est un système de représentants modulo5. Les entiers congrus à1;2;3;4 (mod 5)y restent; les entiers congrus à0sont congrus aussi à

5. Similairement on peut passer de0;1;2;3;4à0;1;2;2;1 =2;1;0;1;2car3 2

et4 1 (mod 5). Les entiers congrus à0;1;2continuent à l"être, ceux congrus à3sont congrus à2, et ceux congrus à4sont congrus à1. En général, si on prend certains nombresa1;a2;:::;arde la liste0;1;2;:::;n1et on les remplace parb1;b2;:::;bravecaibi(modn)pour touti, alors on a toujours un système de représentants modulon.

Théorème 4.2.Soientnetaentiers avecn1.

(a)Sin= 2k+ 1est impair, alorsaest congru modulonà exactement un desnentiers k;:::;1;0;1;:::;k. (b)Sin= 2kest pair, alorsaest congru modulonà exactement un desnentiers (k1);:::;1;0;1;:::;k1;k. Dans les deux casaest congru modulonà exactement un entieravecn2 < n2 Preuve.Le théorème précédent dit que chaque entieraest congru modulonà exactement un entierravec0r < n. Si0rn2 , on pose=r. Sinon, on an2 < r < n, et on pose =rn, et on an2 < <0, et on a toujoursarrn(modn). Doncaest congru modulonà exactement un entier dansn2 ;0[0;n2 =n2 ;n2 Théorème 4.3.Soita1;a2;:::;anune famille denentiers avec la propriété queai6=aj (modn)pour touti6=j. Alorsa1;a2;:::;anest un système de représentants modulon.

Preuve.Considérons l"application

fa1;a2;:::;ang ! f0;1;2;:::;n1g a i7!reste de la division euclidienne deaiparn: Aucun entier parmif0;1;2;:::;n1gn"a plus qu"un antécédent, car siaietajavait le même rester, on auraitairaj(modn), qui est exclu par hypothèse sauf pouri=j. Donc l"application est injective. Une application injective entre deux ensembles du même cardinal fini est toujours bijective. Donc chaque entierkparmif0;1;2;:::;n1ga exactement un antécédent qu"on noteraaik.

30 CHAPITRE 3 : CONGRUENCES ET ARITHMÉTIQUE MODULAIRE

Maintenant tout entier est congru modulonà exactement un entierkparmif0;1;2;:::;n

1get à exactement un entieraikparmifa1;a2;:::;ang.

5.Les carrés modulon

Chercher les carrés modulonsignifie chercher les nombreskparmi0;1;:::;n1pour lesquels il existe unaaveca2k(modn). Commeab=)a2b2(modn), on peut se restreindre par le théorème 4.2 auxaavecn2 < an2 . Mais comme(a)2a2(modn), on peut même se restreindre auxapositifs dans cette liste, c"est à dire à0;1;:::;n2 .Les carrés modulonsont les restes de la division euclidienne parnde02;12;22;:::;n2

2.Par exemple, modulo10on a

0

20;121;224;329;426;525 (mod 10)

Donc0,1,4,5,6,9sont des carrés modulo10, mais2,3,7,8ne sont pas des carrés modulo

10. La représentation décimale d"un carré termine toujours en0,1,4,5,6ou9.

Modulo4on a020,121, et220 (mod 4). Modulo8on a

0quotesdbs_dbs35.pdfusesText_40
[PDF] clé de contrôle sécurité sociale

[PDF] 11 modulo 10

[PDF] calcul modulo 97

[PDF] personnage du livre moi boy

[PDF] escadrille 80 questionnaire de lecture

[PDF] controle de lecture moi boy

[PDF] moi boy roald dahl pdf entier

[PDF] moi boy roald dahl résumé

[PDF] moi boy roald dahl pdf gratuit

[PDF] séquence pluriel des noms ce2

[PDF] no et moi telecharger pdf

[PDF] leçon pluriel des noms ce2 lutin bazar

[PDF] no et moi avis argumenté

[PDF] séquence pluriel des noms ce1

[PDF] effet doppler formules