[PDF] Corrigé du TD no 6 - univ-toulousefr



Previous PDF Next PDF


















[PDF] montrer que f réalise une bijection

[PDF] baguier virtuel sans imprimer

[PDF] baguier gratuit

[PDF] controle francais 4eme poesie lyrique

[PDF] évaluation français entrée 4ème collège

[PDF] bilan exemple

[PDF] bilan définition

[PDF] le bilan comptable cours

[PDF] bilan ulis

[PDF] rapport d'activité ulis

[PDF] comment rédiger un bilan pédagogique

[PDF] rapport d'activité ulis collège

[PDF] comment faire un bilan pédagogique

[PDF] modèle de bilan pédagogique

[PDF] evaluation diagnostique ulis collège

Corrigé du TD no 6 - univ-toulousefr

CPP - 2013/2014 Algèbre générale I

J. Gillibert

Corrigé du TD n

o6Exercice 1 On considère les applicationsfetgdéfinies par f:R2-→Rg:R-→R2 (x,y)?-→xy x?-→(x,x2)

1. Les applicationsf◦getg◦fsont données par

f◦g:R-→Rg◦f:R2-→R2 x?-→f(g(x)) =f(x,x2) =x3(x,y)?-→g(f(x,y)) =g(xy) = (xy,x2y2)

2. (a) L"applicationfest-elle injective? En d"autres termes, est-il possible de retrouver un couple

(x,y)à partir de la donnée de son image parf, à savoir le produitxy? La réponse est évidemment non, mais pour préciser cela il convient de fournir un exemple. On peut prendre celui-ci : f(1,1) =f(2,1/2) = 1 ce qui montre quefn"est pas injective.

(b) L"applicationfest-elle surjective? Autrement dit, est-il vrai que tout élémentt?Rest l"image

parfd"un certain couple? Pour répondre positivement à cette question il suffit de remarquer que f(1,t) =t doncfest surjective. (c) L"applicationgest-elle injective? Oui, car la donnée du couple(x,x2)permet de retrouverx.

Pour répondre à la question en se servant de la définition, on se donne deux réelsxetx?tels

queg(x) =g(x?), c"est-à-dire tels que (x,x2) = (x?,x?2) Alorsx=x?par identification. Ainsi la relationg(x) =g(x?)implique quex=x?, ce qui est la définition de l"injectivité deg.

(d) L"applicationgest-elle surjective? Non, car(1,0)n"admet pas d"antécédent parg: en effet, si

c"était le cas, alors on aurait trouvé un réelxtel que(x,x2) = (1,0), c"est-à-dire tel quex= 1

etx2= 0, ce qui est impossible.

(e) Grâce à l"analyse réelle (théorème de la bijection), on voit quef◦g:R→Rest bijective, en

particulier elle est injective et surjective.

(f) Commefn"est pas injective,g◦fn"est pas injective. En effet, il suffit de récupérer le même

exemple que pourf: g(f(1,1)) =g(f(2,1/2)) = (1,1)

(g) Commegn"est pas surjective,g◦fn"est pas surjective. En effet,(1,0)n"admet pas d"antécédent

parg, donc n"admet pas non plus d"antécédent parg◦f. 1

Exercice 2

On considère l"applicationfdéfinie par

f:R-→R x?-→x(1-x)

1. Soityun réel fixé. On souhaite déterminerf-1({y}), c"est-à-dire l"ensemble des antécédents dey

par la fonctionf, ou encore l"ensemble des solutionsxde l"équationf(x) =y. Or cette équation s"écrit x(1-x) =y c"est-à-dire x

2-x+y= 0

Il s"agit d"une équation de degré2enx, dans laquelleyest vu comme une constante. Le discriminant

estΔ = 1-4y. On distingue alors trois cas possibles : (a)Δ>0, c"est-à-direy <1/4. Alors l"équation a deux solutions qui sont 1 + ⎷1-4y2 et1-⎷1-4y2 (b)Δ = 0, c"est-à-direy= 1/4. Alors l"équation a une solution unique :x= 1/2. (c)Δ<0, c"est-à-direy >1/4. Alors l"équation n"admet pas de solution.

La fonctionfn"est pas injective, car les réels strictement inférieurs à1/4admettent deux antécé-

dents : par exemplef(0) =f(1) = 0. La fonctionfn"est pas surjective, car les réels strictement

supérieurs à1/4n"admettent aucun antécédent. La valeury= 1/4est particulière car c"est le seul

réel qui admet un unique antécédent parf.

2. On peut prendreI=]- ∞,1/2]etJ=]- ∞,1/4]. Alors le théorème de la bijection montre que la

fonction]- ∞,1/2]→]- ∞,1/4]donnée par la même formule quefest une bijection.

Exercice 3

Soientfetgles applications deNdansNdéfinies par : f(n) = 2n, g(n) =?n2

1. (a) L"applicationfn"est pas surjective. En effet,1n"admet pas d"antécédent parf, car il n"existe

pas d"entier naturelntel que2n= 1. Commefn"est pas surjective, elle n"est pas bijective. (b) L"applicationgn"est pas injective. En effet,g(0) =g(1) = 0.

2. (a) L"applicationf◦gn"est pas injective, cargn"est pas injective. En effet,f(g(0)) =f(g(1)) = 0.

Par conséquent,f◦gn"est pas bijective. On notera par ailleurs quef◦gn"est pas surjective,

carfn"est pas surjective. (b) L"applicationg◦f:N→Nest donnée par g(f(n)) =g(2n) =?2n2 =?n? Or icinest un entier naturel, donc?n?=n. Autrement dit,g◦fest l"application identité de

NdansN. Elle est donc bijective.

Exercice 4

Soit l"applicationh:N2→Ndéfinie par

h:N2-→N (p,q)?-→2p3q 2

1. On se demande sihest injective. Soient(p,q)et(a,b)deux éléments deN2tels queh(p,q) =h(a,b),

alors nous avons 2 p3q= 2a3b

Par unicité de la décomposition d"un nombre en produit de facteurs premiers, on en déduit que

p=aetq=b.

2. On se demande sihest surjective. Par unicité de la décomposition d"un nombre en produit de

quotesdbs_dbs2.pdfusesText_2