[PDF] Courbes paramétrées Courbes polaires - univ-toulousefr



Previous PDF Next PDF
















[PDF] courbes paramétrées exercices corrigés prépa

[PDF] courbe paramétrée exo7

[PDF] comment dessiner une branche parabolique

[PDF] résumé branches infinies

[PDF] branches infinies developpement limité

[PDF] branche parabolique de direction asymptotique

[PDF] methode branches infinies

[PDF] etudes des fonctions branches infinies

[PDF] mode d'emploi lave linge brandt

[PDF] comment utiliser machine a laver brandt

[PDF] bras de levier définition

[PDF] levier inter appui

[PDF] cours moment d'une force par rapport ? un axe

[PDF] bras de levier calcul

[PDF] moment d'une force cours

Courbes paramétrées,

Courbes polaires

Exercice 1(Une courbe paramétrée).On considère la courbe paramétrée suivante : [0;]!R2 t7!(x(t);y(t)) = (2cos(t);3sin(t)): 1.

En év aluant

(t)pour un certain nombre de valeurs detbien choisies, effectuer un dessin préliminaire de la courbe paramétrée par

Solution:La courbe décrite par

étant construite à partir des fonctionscosetsin, on peut utiliser les valeurs remarquables de ces deux fonctions pour construire un certain nombre de points de la courbe. Les valeurs choisies sont résumées dans le tableau suivant.t06 4 3 2 23
34
56
x(t) 2p3 p2 1 01p2p32 y(t) 032 3p2 2 3p3 2 33p3
2 3p2 2 32

0On peut alors obtenir la figure suivante, sur laquelle on devine une courbe qui pourrait être par

exemple une parabole ou une demi-ellipse.21012xy 0123
2. Mon trerque la fon ctiont7!9x(t)2+ 4y(t)2est constante. Solution:D"après le théorème de Pythagore,cos2(t) +sin2(t) = 1quel que soitt2R. Par conséquent, on a pour toutt2Rl"égalité

9x2(t) + 4y2(t) = 36cos2(t) + 36sin2(t) = 36:3.Quelle courb eest repré sentéepar

Solution:On reconnait dans l"équation

9x2+ 4y2= 36

l"équation d"une ellipse centrée à l"origine. D"après la réponse à la question précédente,(x(t);y(t))

vivent pour toutt2[0;]sur cette ellipse. Cependant, puisquet2[0;], l"intégralité de l"ellipse n"est

pas parcourue. At= 0, on part du point de coordonnées(2;0)sur l"ellipse, pour remonter ensuite

vers la partie supérieur du plan et parcourir la demi-ellipse en arrivant au point de coordonnées

(2;0). La partie inférieur de l"ellipse ne fait pas partie de la courbe (elle en ferait partie si on avait

pristdans l"intervalle[0;2]). La courbe est représentée en bleu dans la figure suivante.21012xy

3210123

Exercice 2(Folium).On considère la courbe paramétrée définie par les équations x(t) = sin(2t); y(t) = sin(3t);t2R: 1.

En ut ilisantles propri étésde s ymétriede la courb e,mon trerqu"o np eutréduire le domaine d"étude à

t2[;], puis àt2[0;]. Solution:Commencons par rappeler que la fonctionsinest périodique de période2. La fonction xest donc périodique de périodeTx=22 =et la fonctionyest également périodique, de période T y=23 . Le rapport entre ces deux périodes est T yT x=23 =23 C"est un nombre rationnel, il existe donc une période communeTentrexetyqui est donnée par

T= 3Ty= 2Tx= 2:

On peut donc se réduire à l"étude de la courbe sur un domaine de longueur2, comme par exemple

Étudions maintenant la parité de la courbe. La fonctionsinest impaire et on a donc x(t) =x(t); y(t) =y(t):

Par conséquent, la courbe pour lest <0s"obtient par symétrie centrale de la courbe pour lest >0et

réciproquement. On peut donc se restreindre à la partie positive de l"intervalle d"étude précédement

selectionné, c"est à dire se restreindre à[0;].Page 2

2.Exprimer x(t)ety(t)en fonction dex(t)ety(t). Montrer que la courbe a une symétrie

supplémentaire et qu"on peut restreindre le domain d"étude àt20;2

Solution:On a

x(t) = sin(2(t)) = sin(22t) = sin(2t) =sin(2t) =x(t); y(t) = sin(3(t)) = sin(33t) = sin(3t) = sin(3t) =y(t): Par conséquent, on peut déduire la courbe pourt22 ;de la courbe sur0;2 par symmétrie par rapport à l"axe des ordonnnées. Ainsi, il suffit d"étudier la courbe sur l"intervalle0;2 .3.Construire le tableau de v ariationdes fonction sxetysur l"intervalle0;2 . On indiquera les valeurs de x,x0,yety0pour les valeurs6 4et3

Solution:Les dérivées dexetysont

x

0(t) = 2cos(2t); y0(t) = 3cos(3t):

Le tableau de variation de la courbe est donc le suivant.t x

0(t)x(t)y

0(t)y(t)y

0(t)x 0(t)0 6 4 3 2

2+1+0120011

00p3 2p3 2 3+0 p3 230
0011 11p2 2 0 3 20130
4. Dessiner la courb een commencan tpar la partie corresp ondantà t20;2 , puis en utilisant les symétries pour obtenir l"ensemble de la courbe. Solution:En combinant les informations obtenues, on a la figure suivante. La partie bleue est la courbe obtenue pourt20;2 . La partie rouge s"obtient par symétrie par rapport à l"axe des ordonnées et la partie noire par symétrie centrale.Page 3 101xy
101

Exercise 1(Astroïde).On considère la courbe paramétrée définie par les équations suivantes

x(t) = cos3(t); y(t) = sin3(t);t2R: 1.

En utilisan tles pr opriétésde symétrie d ela courv e,réduire le domain d"étude à un in tervallede R.

2.

Constuire le table aude v ariationp ourxety.

Solution:t

x

0(t)x(t)y

0(t)y(t)y

0(t)x 0(t)0 4 0 3p2 4 11 p2 4p2 4 0+3 p2 4 00p2 4p2 4

013.Donner les co ordonnéesde sp ointsde la courb equ andt= 0,2

,et donner la pente des tangentes en ces points

Page 4

4.Dessiner la courb e.

Solution:En combinant les informations obtenues, on a la figure suivante101xy 101
5. Calculer la longu euret la courbue de l"ast roïde.

Exercise 2(Branches infinies).On considère la courbe paramétrique définie par les équations suivantes.

x(t) =1t(t1); y(t) =t21t;t2R: 1.

Exprimer x1t

ety1t en fonction dex(t)ety(t). Déterminer une symétrie de la courbe et en déduire qu"on peut réduire le domaine d"étude àI= (1;1)n f0g. 2.

Construire le tabl eaude v ariationsur I.

Solution:On a

x

0(t) =2t+ 1t

2(t1)2; y0(t) =t(t2)(t1)2:

Par conséquent, le tableau de variation est le suivant.Page 5 t x

0(t)x(t)y

0(t)y(t)y

0(t)x

0(t)101

21
3 4++0 1 21

2+11441

34+3+
1 21
2 00+11 2 11 3. Étudier les branc hesinfinies de la courb esur I. Solution:On a une branche infinie lorsqu"il existet0tel que lim t!t0x(t) =1oulimt!t0y(t) =1: Cette situation se produit ent= 0ett= 1. Ent= 0, on a lim t!0;t<0x(t) = +1;limx!0;t>0x(t) =1; et dans tous les casquotesdbs_dbs19.pdfusesText_25