[PDF] Etude de branches in nies 1 D emarche Etant donn ee une fonction



Previous PDF Next PDF
















[PDF] mode d'emploi lave linge brandt

[PDF] comment utiliser machine a laver brandt

[PDF] bras de levier définition

[PDF] levier inter appui

[PDF] cours moment d'une force par rapport ? un axe

[PDF] bras de levier calcul

[PDF] moment d'une force cours

[PDF] moment d'une force par rapport ? un axe pdf

[PDF] moment de force exercice

[PDF] moment d'un couple de force

[PDF] brassage interchromosomique et intrachromosomique

[PDF] brassage intrachromosomique drosophile

[PDF] brassage allélique définition

[PDF] definition brassage allelique

[PDF] le brassage allélique induit par la méiose

Etude de branches in nies 1 D emarche Etant donn ee une fonction

Etude de branches innies.

1 Demarche

Etant donnee une fonctionf:R!R, l'etude de ses branches innies a pour objectif de comprendre en details le comportement def(x) quandxtend vers +1ou1. La premiere chose a faire est donc de calculer lim x!+1f(x). On peut alors donner une premiere interpretation des dierents resultats que l'on peut obtenir pour ce calcul. On distingue prin- cipalement deux types de resultats possibles. (Remarque : ici, on travaillera autour de +1, mais l'on pourrait faire exactement la m^eme chose autour de1). Premier cas.Cette limite est nie : limx!+1f(x) =`2R: On conclue alors que la courbe admet uneasymptote horizontaled'equationy=`en +1 et l'etude est terminee.

Exemples :

f(x) =1x ; g(x) =xex; h(x) =2x2+ 1x 2+ 3 Second cas.Cette limite est innie : limx!+1f(x) = +1: La fonctionfn'admet alors pas d'asymptote horizontale en +1et l'on doit poursuivre l'etude pour etudier de plus pres le comportement def(x) autour de +1. Intuitivement, le calcul de limx!+1f(x) nous dit dans ce cas la quef(x) grandit quandxgrandit. Les questions qui se pose a ce moment la sont : \a quelle vitesse granditf(x)? Grandit-elle plus vite ou moins vite quex?" La encore, un calcul de limite va pouvoir nous aider a repondre : pour comparer la croissance def(x) et celle dex, on calcule limx!+1f(x)x Le comportement de la fonctionfautour de +1dependra alors du type de reponse obtenu mais contrairement a tout a l'heure, on distingue ici trois types de reponses possibles (et non plus deux).

Soit lim

x!+1f(x)x = 0:Dans ce cas,f(x) grandit moins vite quex.

Exemples :

f(x) = ln(x); g(x) =px; h(x) =x2+ 12 px3: 1 On dit que la courbe defadmet une branche parabolique d'axe (Ox).

Soit lim

x!+1f(x)x = +1. Dans ce cas,f(x) grandit plus vite quex.

Exemples :

f(x) =ex; g(x) =x2; h(x) =x4+ 2x31x 2+ 4: On dit que la courbe defadmet une branche parabolique d'axe (Oy).

Soit lim

x!+1f(x)x =a2R. Dans ce cas, la vitesse de croissance def(x) est comparable a celle deaxquandxgrandit. Pour eectuer cette comparaison, on etudie une derniere limite : celle de la dierencef(x)axet on distingue deux cas :

Soi tlim

x!+1f(x)ax=b2Ret la courbe defadmet la droite d'equationy=ax+b pour asymptote oblique.

Exemples :

f(x) =x3+x+ 1x

2+ 4; g(x) =x(px

2+ 2xpx

2+ 1); h(x) =x2lnx+ 2x

Soi tlim

x!+1f(x)ax=1et la courbe defadmet une branche parabolique de directiony=ax.

Exemples :

f(x) =x+px; g(x) =x2lnx+ 1lnx ********************Resume :

1. Calcul de lim

x!+1f(x).- Si c'est un reel`, asymptote d'equationy=`.- Si c'est +1, passer a l'etape 2.2. Si le resultat precedent est +1, calcul de limx!+1f(x)x

.- Si c'est 0 ou +1, pas d'asymptote mais une branche parabolique.- Si c'est un reelanon nul, passer a l'etape 3.3. Si le resultat precedent est un nombre non nula2R, calcul de limx!+1f(x)ax.- Si c'est un reelb, la droite d'equationy=ax+best alors asymptote a la courbe def.- Si c'est +1, pas d'asymptote mais une branche parabolique d'axe oblique.2

2 Exercices

Exercice 1

Etudier le comportement asymptotique des fonctions suivantes. g(x) =cos(x)x ; h(x) =p9x4+ 3x31x 2+ 1:

Exercice 2

Etudier le comportement a l'inni des fonctions suivantes f:x7!2x3+x1x

2+ 1; g(x) =px

9+ 2xx

21

Exercice 3Soientfetgdenies par

f(x) = ln1 +xx ; g(x) =x+ 2ln1 +xx 1. Etudier le comportement defautour de +1. Donner l'equation de l'eventuelle asymp- tote. 2. A l'aide de la question precedente, etudier le comportement de la fonctiongen +1.

3 Complements

En realite, l'etude des branches innies d'une fonctionfpourrait se resumer a la question suivante : \Existe-t-il une fonction plus simple quefqui se comporte commefautour de +1?" Pour repondre a cela, on cherche donc une fonctiongplus simple telle que lim x!+1f(x)g(x) = 0: Dans la premiere partie, on se contente de comparerfavec des fonctions anes (i.e. des droites). Mais rien ne nous empeche de comparerfa des fonctions plus complexes. Exercice 4Montrer que les courbes associees aux fonctionsf:x7!px

4+ sin(x) etg:x7!x2

sont asymptotiques. Exercice 5Montrer que les courbes des fonctions suivantes sont asymptotiques. f(x) =ex+ex2 ; g(x) =exex2 3quotesdbs_dbs2.pdfusesText_2