[PDF]

La démonstration par récurrence sert lorsqu'on veut démontrer qu'une propriété, dépendant de n, est vraie pour toutes les valeurs de n On appelle dans ce cas 乡n la propriété en question On est ainsi amené à montrer que la propriété 乡n est vraie pour toutes les valeurs de n



Previous PDF Next PDF





[PDF] Raisonnement par récurrence - Maths-francefr

Montrer par récurrence que pour tout entier naturel n, un = 4 − 1 2n−1 Solution 2 • Si n = 0, 4 − 1 2n−1 = 4 − 2 = 2 = u0 L'égalité de l'énoncé est vraie 



[PDF] La démonstration par récurrence - JavMathch

on observe que le membre de droite de l'égalité vaut justement (n + 1)2 La formule est encore vraie pour n + 1; elle est donc vraie pour n = 5 La formule étant 



[PDF] Entraînement sur les récurrences

Démontrer que, pour tout n ≥ 1 on a : (1 + a)n ≥ 1 + na Corrigé 1 Nous allons démontrer cette égalité par récurrence sur n Initialisation : pour n = 1, l'égalité s'  



[PDF] Correction : Devoir à la maison 1 Exercice 1 : 1°) Montrer par

Exercice 1 : 1°) Montrer par récurrence que, pour tout , On posera 2°) En déduire la valeur de On pourra calculer Correction 1°) On appelle l'égalité Si , et



[PDF] Linégalité de Bernoulli Démontrer par récurrence que - PanaMaths

1; , 1 1 x nx x ∀ ∈ − + ∞ + = + L'inégalité (qui s'avère être une égalité dans ce cas) est donc bien vérifiée pour tout réel x supérieur ou égal 



[PDF] Raisonnement par récurrence - PAESTEL

kn a Cette égalité est-elle vraie pour n = 1, 2, 3, 4, 5? 1 



[PDF] Récurrence - Normale Sup

27 sept 2011 · La démonstration par récurrence est un schéma de démonstration que Énoncé : Nous allons prouver par récurrence la propriété Pn : un > 2



[PDF] Raisonnement par récurrence - Normale Sup

Raisonnement par récurrence Correction est vraie pour tout n ∈ N∗ par récurrence Initialisation Pour tout n ∈ N, on a l'égalité 10n+1 = 10n(9 + 1) Alors,

[PDF] oeuvre de molière en 1665

[PDF] moliere 1662

[PDF] moliere 1664

[PDF] moliere 1662 theatre

[PDF] molière 1668

[PDF] moliere 1672

[PDF] george dandin comique de situation

[PDF] séquence l'homme et son rapport au monde les mythes

[PDF] maladie de moliere

[PDF] l'homme et son rapport au monde bac pro revision

[PDF] la chine et le monde depuis 1919 fiche

[PDF] la chine et le monde depuis 1949 fiche bac

[PDF] fiche revision mondialisation terminale es

[PDF] mondialisation fiche bac

[PDF] la chine depuis 1911 fiche sti2d

Année 2007-20081èreSSVT

La démonstration par récurrence

Dans toute la suitenappartientàN.

La démonstrationparrécurrencesertlorsqu"onveut démontrerqu"une propriété,dépendantde n, est vraie pour toutes les valeurs den. On appelle dans ce casPnla propriétéen question. On est ainsi amené à montrer que la propriétéPnest vraiepour toutesles valeursden. P

1?P0?P2?P3?P4?······

Exemple :Prenons un exemple simple pour illustrer le raisonnement par récurrence. On veut montrer par récurrence la propriété : ??pour tout entiernon a : 0+1+2+···+n=n(n+1) 2.??

Pour n"importe quel entiernon appellePnla propriété (à démontrer):??1+2+···+n=n(n+1)

2??. On peut à présent démontrer par récurrence que :??0+1+2+···+n=n(n+1)

2pour tout entiern??.

La démonstration par récurrencese fait en trois étapes : •Initialisation: on vérifie que la propriété est vraie pour la première valeur den(souvent n=0).

On vérifie donc queP0est vraie.

P 1?

P0vraieP2?P3?P4?······

Exemple :

•Initialisation: icin=0 doncn(n+1)2=0×(0+1)2=0 et ainsi la propriétéP0est vraie. •Hérédité:

on démontre la propriété suivante :??si la propriété est vraie pour un certain rangk(n"importe lequel)

alors la propriété est vraie pour le rang juste après c"est-à-dire pour le rangk+1??.

PkvraiePk+1?transmission

La propriété se transmet de la valeur de l"indicekà la valeur de l"indicek+1.

On dit que la propriété est

héréditaire.

Page 1/2

Année 2007-20081èreSSVT

Exemple :•Transmission:

Sila propriétéPkest vraie(pour un certain k)montrons qu"alorsPk+1est vraie aussi . On sait (par hypothèse de récurrence) : 0+1+2+···+k=k(k+1) 2. On veut démontrer que : 0+1+2+···+(k+1)=(k+1)?(k+1)+1?

2=(k+1)(k+2)2.

On a 0+1+2+···+(k+1)=0+1+2+···+k+(k+1) . Par ailleurs d"après l"hypothèse de récurrence 0+1+2+···+k=k(k+1)

2donc 0+1+2+···+(k+1)=k(k+1)2+(k+1) .

On a ensuite

k(k+1)

2+(k+1)=k(k+1)2+2(k+1)2=(k+1)(k+2)2et donc il suit que

0+1+2+···+(k+1)=(k+1)(k+2)

2.

La propriétéPk+1est ainsi vraie.

On a donc bien montré que si

Pkest vraie alorsPk+1l"est aussi.

•Conclusion:

les deux étapes précédentes permettent de conclure que la propriété est vraie pour tous les entiersn.

En effet la propriétéest vraie au rang 0 donc avec l"étape d"hérédité elle devient vraie au rang 1. On peut

alors réappliquer l"étape d"hérédité au rang 1 et la propriété devient vraie au rang 2.

En réappliquant l"étape d"hérédité de proche de proche, il suit que la propriété est vraie pour tous les

entiersn.

P1vraieP0vraieP2?transmission

P

3?P4?······

P1vraieP0vraieP2vraieP3vraie

P4?transmission

Exemple :

•Conclusion: On a ainsi pour tout entiernl"égalité : 0+1+2+···+n=n(n+1)2.

Page 2/2

quotesdbs_dbs35.pdfusesText_40