[PDF] [PDF] Corrigé du baccalauréat S Liban du 5 juin 2017 - APMEP

5 jui 2017 · Corrigé du baccalauréat S Liban du 5 juin 2017 A P M E P Exercice 1 6 points Commun à tous les candidats On considère un cube 



Previous PDF Next PDF





[PDF] Corrigé du baccalauréat S Liban du 5 juin 2017 - APMEP

5 jui 2017 · Corrigé du baccalauréat S Liban du 5 juin 2017 A P M E P Exercice 1 6 points Commun à tous les candidats On considère un cube 



[PDF] Baccalauréat S Liban 5 juin 2017 - APMEP

5 jui 2017 · Baccalauréat S Liban 5 juin 2017 Exercice 1 6 points Commun à tous les candidats On considère un cube ABCDEFGH dont la représenta-



[PDF] Liban 2017 Enseignement spécifique Corrigé - Maths-francefr

Liban 2017 Enseignement spécifique Corrigé EXERCICE 1 Partie A 1) Le point D a pour coordonnées (0, 0, 0) et le point F a pour coordonnées (1, 1, 1)



[PDF] Sujet du bac S Mathématiques Obligatoire 2017 - Liban - Freemathsfr

SESSION 2017 MATHÉMATIQUES Page 1/6 Sujets Mathématiques Bac 2017 freemaths Liban freemaths freemaths Bac - Maths - 201 7 - Série S 



[PDF] Sujet du bac S Mathématiques Obligatoire 2017 - Liban - Freemathsfr

Liban 201 7 - freemaths Bac - Maths - 201 7 - Série S EXERCICE 1 (6 points) Commun à tous les candidats On considère un cube ABCDEFGH dont la 



[PDF] Sujet du bac ES Mathématiques Obligatoire 2017 - Liban

Le sujet est composé de 4 exercices indépendants Le candidat doit traiter tous les exercices Dans chaque exercice, le candidat peut admettre un résultat 



[PDF] Baccalauréat 2017 - S Liban

Liban Série S Obli et Spé 5 Juin 2017 Correction Like Math93 on Facebook / Follow Math93 on Twitter / Remarque : dans la correction détaillée ici proposée  



[PDF] Corrigé du baccalauréat ES Liban juin 2017 - Site de Maths Grange

5 jui 2017 · Corrigé du baccalauréat ES Liban juin 2017 Exercice 1 3 points 1 Réponse c Soit µ la valeur moyenne de g sur [1 ; e], on a : µ = 1 e−1 ∫ e

[PDF] antilles guyane 2016 maths

[PDF] annabac maths ts

[PDF] monde inerte svt

[PDF] apparition de nouvelles espèces svt 2nde

[PDF] minority report résumé

[PDF] modélisation file d'attente

[PDF] exercices corrigés processus de poisson

[PDF] file d'attente exercice corrigé

[PDF] cours files d'attente pdf

[PDF] file d'attente m/m/1/k

[PDF] drogues les plus consommées dans le monde

[PDF] file d'attente m/m/s

[PDF] statistique drogue 2015

[PDF] chiffre d'affaire de la drogue dans le monde

[PDF] onudc recrutement

Corrigé du baccalauréat S Liban du 5 juin 2017

A.P. M. E.P.

Exercice 16 points

Communà tous les candidats

On considère un cube ABCDEFGH dont la

valière est donnée ci-contre.

Les arêtes sont de longueur 1.

L"espace est rapporté au repère orthonormé

D ;--→DA,--→DC,--→DH?

?A BC DE FG H M

Partie A

1.Montrer que le vecteur--→DF est normal au plan (EBG).

Solution :Dans le repère orthonormé?

D ;--→DA,--→DC,--→DH?

on a D(0; 0; 0) , F(1; 1; 1) , E(1; 0; 1) , B(1; 1; 0) et G(0; 1; 1) donc--→DF((111)) ,-→EB((01 -1)) et ,--→EG((-1 1 0)) on a alors

--→DF·-→EB=0+1-1=0 et--→DF·--→EG=-1+1+0=0--→DF est donc orthogonal à deux vecteurs non colinéaires du plan (EBG), il est

bien normal à ce plan

2.Déterminer une équation cartésienne du plan (EBG).

Solution :--→DF((111))

est un vecteur normal au plan (EBG) donc(EBG):x+y+z+d=0orE(1; 0; 1)?(EBG), d"où 1+1+d=0??d=-2 finalement une équation de (EBG) est :x+y+z-2=0

3.En déduire les coordonnées du point I intersection de la droite (DF) et du plan

(EBG). Solution :Une représentation paramétrique de (DF) est???????x=t y=t z=t(t?R) Les coordonnées de I doivent donc vérifier le système : ?x=t y=t z=t x+y+z-2=0Il

Baccalauréat 2017 page 1 sur 11 A. Detant

Corrigé du baccalauréat S Liban du 5 juin 2017

A.P. M. E.P.

en résulte 3t-2=0?? t=2 3.

On a alors I

?2

3;23;23?

On démontrerait de la même manière que le point J intersection de la droite (DF) et du plan (AHC) a pour coordonnées?1

3;13;13?

Partie B

À tout réelxde l"intervalle [0; 1], on associe le pointMdu segment [DF] tel que---→DM=x--→DF.

On s"intéresse à l"évolution de la mesureθen radian de l"angle?EMB lorsque le pointM parcourt le segment [DF]. On a 0?θ?π.

1.Que vautθsi le pointMest confondu avec le point D? avec le point F?

Solution :Si M est confondu avec D alors?EMB=?EDB=π3car EDB est un triangle équilatéral

Si M est confondu avec F alors

?EMB=?EFB=π

2car EFB est un triangle rec-

tangle en F

2. a.Justifier que les coordonnées du pointMsont (x;x;x).

Solution :---→DM=x--→DF et--→DF((111)) donc---→DM((xxx)) or D(0; 0; 0)

On a donc bienM(x;x;x)

b.Montrer que cos(θ)=3x2-4x+13x2-4x+2. On pourra pour cela s"intéresser au pro- duit scalaire des vecteurs --→ME et--→MB.

Solution :--→ME((1-x

-x 1-x)) et--→MB((1-x 1-x -x)) de plus

3x2-4x+2?3x2-4x+2×cos(θ)

=(3x2-4x+2)cos(θ)

On a donc bien cos

(θ)=3x2-4x+1

3x2-4x+2

Baccalauréat 2017 page 2 sur 11 A. Detant

Corrigé du baccalauréat S Liban du 5 juin 2017

A.P. M. E.P.

3.On a construit ci-dessous le tableau de variations de la fonction

f:x?-→3x2-4x+1

3x2-4x+2.

x013231

Variations

def1 2 0 1 20 Pour quelles positions du pointMsur le segment [DF] : a.le triangleMEB est-il rectangle enM? Solution :Le triangle est rectangle enMsi cos(θ)=cos??EMB?=0

Il y a donc deux positions du pointM:

pourx=1

3et pourx=1 c"est à dire pourMen J ou pourMen F

b.l"angleθest-il maximal?

Solution :

l"angleθest maximal quand son cosinus est minimal c"est à dire quand x=2

3autrement dit quandMest confondu avec I.

Exercice 26 points

Communà tous les candidats

Danscetexercice, onétudiequelquesgrandeurscaractéristiquesdufonctionnementdes parkings d"une ville. Dans tout l"exercice, les probabilités seront données avecune précision de 10-4.

Les partiesA,B, etCsont indépendantes

Partie A - Durée d"attente pour entrer dans un parking souterrain On appelle durée d"attente le temps qui s"écoule entre le moment où la voiture se pré-

sente à l"entrée du parking et le moment où elle franchit la barrière d"entrée du parking.

Le tableau suivant présente les observations faites sur unejournée. Durée d"attente en minute[0; 2[[2; 4[[4; 6[[6; 8[

Nombre de voitures7519105

1.Proposer uneestimation de laduréed"attentemoyenne d"unevoiture àl"entréedu

parking.

Baccalauréat 2017 page 3 sur 11 A. Detant

Corrigé du baccalauréat S Liban du 5 juin 2017

A.P. M. E.P.

75×1+19×3+10×5+5×7

75+19+10+5=217109≈2

Donc la durée moyenne d"attente serait d"environ 2 minutes.

2.On décide de modéliser cette durée d"attente par une variable aléatoireTsuivant

une loi exponentielle de paramètreλ. a.Justifier que l"on peut choisirλ=0,5.

Solution :On aE(T)=1λ=2 doncλ=0,5

b.Une voiture se présenteà l"entrée du parking. Quelle est la probabilité qu"elle mette moins de deux minutes pour franchir la barrière?

Solution :On chercheP(T?2)

P(T?2) =?

2 0

0,5e-0,5tdt=?-e-0,5t?20=1-e-1=1-1

e≈0,6321. babilité qu"elle franchisse la barrière dans la minute suivante?

Solution :On cherchePT?1(T?2)

Tsuit une loi exponentielle donc une loi de durée de vie sans vieillisse- ment donc ?h>0 ,PT?h(T?t+h)=P(T?t) donc par passage au complémentaire on a?h>0 ,PT?h(T?t+h)=

P(T?t)

on en déduitPT?1(T?2)=PT?1(T?1+1)=P(T?1)

P(T?1)=?

1 0

0,5e-0,5tdt=?-e-0,5t?10=1-e-0,5=1-1

?e≈0,3935 Partie B - Durée et tarifs destationnement dans ce parking souterrain Une fois garée, la durée de stationnement d"une voiture est modélisée par une variable aléatoireDqui suit la loi normale d"espéranceμ=70 min et d"écart-typeσ=30 min.

1. a.Quelle est la durée moyenne de stationnement d"une voiture?

Solution :La durée moyenne de stationnement estμ=70 min b.Un automobiliste entre et se gare dans le parking. Quelle estla probabilité que sa durée de stationnement dépasse deux heures?

Baccalauréat 2017 page 4 sur 11 A. Detant

Corrigé du baccalauréat S Liban du 5 juin 2017

A.P. M. E.P.

Solution :On chercheP(D?120)

P(D?120)≈0,0478

99% des voitures?

Solution :On cherche le plus petitttel queP(D?t)?0,99 à l"aide de la calculatrice,t≈139,8 donc le temps maximum de station- nement pour au moins 99% des véhicules est d"environ 2 heureset 20 minutes.

2.La durée de stationnement est limitée à trois heures. Le tableau donne le tarif de

la première heure et chaque heure supplémentaire est facturée à un tarif unique. Toute heure commencée est due intégralement.

Durée de

stationnementInférieure à 15 minEntre 15 min et 1 hHeure supplémentaire

Tarif en eurosGratuit3,5t

Déterminer le tariftde l"heure supplémentaire que doit fixer le gestionnaire du parking pour que le prix moyen de stationnement d"une voiture soit de 5 euros. Solution :SoitXla variable aléatoire donnant le tarif de stationnement en euro, la loi de probabilité deXest donnée par le tableau suivant : xi03,53,5+t3,5+2tTOTAL

P(X=xi)P(D?15)≈

0,0334P(15?D?

60)≈

0,3361P(60?D?

120)≈

0,5828P(120?

D?180)≈

0,04771

On a alorsE(X)=5??3,5×0,3361+0,5828×(3,5+t)+0,0477×(3,5+2t)=5 ??3,3831+0,6782t=5 ??t=1,6169

0,6782≈2,38

Le tarif doit être de 2 euros et 38 centimes par heure supplémentaire pour que le prix moyen soit de 5 euros. Partie C - Temps d"attente pour se garer dans un parking de centre-ville La durée de stationnement d"une voiture dans un parking de centre-ville est modélisée par une variable aléatoireT?qui suit une loi normale d"espéranceμ?et d"écart-typeσ?. On sait que la moyenne du temps de stationnement dans ce parking est égale à 30 mi- nutes et que 75% des voitures ont un temps de stationnement inférieur à 37 minutes. Le gestionnaire du parking vise l"objectif que 95% des voitures aient un temps de sta- tionnement entre 10 et 50 minutes. Cet objectif est-il atteint?

Baccalauréat 2017 page 5 sur 11 A. Detant

Corrigé du baccalauréat S Liban du 5 juin 2017

A.P. M. E.P.

Solution:On aμ?=30 d"après l"énoncé

T ?suit donc la loi normale d"espéranceμ?=30 et d"écart typeσ?.

On a de plus,P(T??37)=0,75.

SoitZ=T?-30

σ?alorsZsuit la loi normale centrée réduite. T ??37??T?-30?37-30??T?-30

σ??7σ???Z?7σ?

DoncP(T??37)=0,75??P?

Z?7 =0,75

D"après la calculatrice,

7 σ?≈0,6745 soitσ?≈10,4; la variable aléatoireT?suit donc la loi normale de paramètresμ?=30 et d"écart-typeσ?=10,4. On a alors :P(10?T??50)≈0,946 ce qui veut dire qu"on peut estimer qu"il y aura environ 94,6% des voitures qui auront un temps de stationnement compris entre 10 et 50 minutes. On peut donc considérer que l"objectif de 95% n"est pas atteint.

Exercice 33 points

Communà tous les candidats

Soitkun réel strictement positif. On considère les fonctionsfkdéfinies surRpar : f k(x)=x+ke-x. On noteCkla courbe représentative de la fonctionfkdans un plan muni d"un repère orthonormé. On a représenté ci-dessous quelques courbesCkpour différentes valeurs dek.

0 1 2 3 4 5 6 7 8-1-2-3-41

2345678

Pour tout réelkstrictement positif, la fonctionfkadmet un minimum surR. La valeurquotesdbs_dbs35.pdfusesText_40