[PDF] [PDF] FICHE METHODE sur les FONCTION CARREE I) A quoi sert la

Propriété 1 : PARITE DE LA FONCTION CARREE La fonction carrée est telle que pour tout nombre réel x ∈ IR on a x² = (-x)² ( le carré d'un nombre est égal au 



Previous PDF Next PDF





[PDF] Fonction carré et fonctions associées - Labomath

Commençons par construire la représentation graphique de la fonction carré à partir d'un tableau de valeurs x -4 -3 -2 -1 0 1 2 3 4 x² 16 9 4 1 0 1 4 9 16



[PDF] FONCTIONS DE REFERENCE - maths et tiques

Une fonction constante sur I peut être considérée comme croissante et décroissante sur I 2) Fonction carré Définition : La fonction carré est la fonction f définie 



[PDF] Seconde - Fonction carré - Parfenoff

Fonction carré I) Définition La fonction carré est la fonction définie sur ℝ , qui à tout réel associe son carré ² : : ⟼ ² II) Sens de variation 



[PDF] Fonctions carrée et fonctions de degré 2

Soit f(-x) = f(x) Page 3 Seconde Cours – fonction carrée et fonctions de degré 2 3 II La fonction f : x a(x - α)² + β a) Sens de variation La fonction f est définie 



[PDF] FICHE METHODE sur les FONCTION CARREE I) A quoi sert la

Propriété 1 : PARITE DE LA FONCTION CARREE La fonction carrée est telle que pour tout nombre réel x ∈ IR on a x² = (-x)² ( le carré d'un nombre est égal au 



[PDF] Fonctions à deux variables - Normale Sup

25 jan 2012 · La plupart du temps, une ligne de niveau n'est pas la courbe représentative d' une fonction à une variable 1 Page 2 Exemple : Considérons la 



[PDF] Fonction carre et second degre - MATHS EN LIGNE

Représenter graphiquement la fonction carré ▫ Connaître les variations des fonctions polynômes de degré 2 (monotonie, extremum) et la propriété de symétrie 



[PDF] LES FONCTIONS DE REFERENCE

Remarque : La suite d'inégalités ci–dessus explique que la fonction cube tende plus rapidement vers 0 que la fonction carré lorsque x tend vers 0 2) Cas d'une 



[PDF] Tableau de variation :

2) Cas d'une fonction dérivable ou monotone sur un intervalle I de IR : a) Observation des fonctions de référence : x ↦ x² Tableau de variation : f est croissante 



[PDF] Activité Fonction carré

Activité : Fonction carré A l'aide d'une calculatrice ou du logiciel Géogébra, construire la courbe représentative de la fonction : ² f x x Est-ce une fonction 

[PDF] trigonométrie 1ere sti2d cours

[PDF] arctan valeurs particulières

[PDF] production électricité particulier

[PDF] comment protéger le sol

[PDF] fonctions hyperboliques exercices corrigés

[PDF] arctan valeur remarquable

[PDF] fonction circulaire réciproque cours

[PDF] limite de arctan

[PDF] limite arctan en 0

[PDF] le pouvoir du peuple par le peuple pour le peuple

[PDF] fonctions trigonométriques réciproques pdf

[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition

FICHE METHODE sur les FONCTION CARREE

a) Exemples :

?. Son abscisse est égale à 0 mètres et il s"éloigne en accélérant de 5m.s-1 par seconde !

Comment varie son abscisse en fonction du nombre t de secondes ? f(t) = 2,5t² ?. Il a lâché la pierre du haut du pont ! A quelle distance du point de départ la pierre sera t-elle dans t secondes ? f(t) = 5t² ?. Il s"est entraîné 1 minute aujourd"hui et s"entraîne chaque jour 1 minute de plus que le

précédent ! Combien se sera t-il "entraîné au total dans x jours ? : f(x) = 0,5x² + 1,5x + 1

?. Un carré a un coté de x mètres ! Que vaut son aire en fonction de x ? : f(x) = x²

?. Si le prix est de 100 euros, il en vend 0 et chaque fois qu"il baisse le prix de 1 euro, il en vend

1 de plus ! Quelle somme gagne t-il s"il baisse le prix de x euros ? R(x) = x(100 -x) = 100x - x²

b) Remarques :

Le monde est en perpétuelle évolution et les fonctions numériques servent à rendre compte de

ces évolutions. Les évolutions que l"on constate dans la réalité ne sont pas toutes de même nature

( la vitesse de croissance d"un arbre, la position d"une pierre en chute libre,...), à une certaine

" façon » d"évoluer correspond un certain type de fonction, de la même façon que les fonctions

affines permettent de décrire une " sorte » d"évolution, certains phénomène peuvent-être décrits

grâce à la fonction carrée, fonction dont il faut connaître les propriétés principales !

Définition 1 : ( fonction carrée )

La fonction carrée associe à tous nombre réel x Î IR le carré de ce nombre : x² ( x² = x´ x )

On note : f : ??? IR

¾¾® IR

x ½¾¾® x² ou encore : f(x) = x² pour x Î IR .

Exemples :

.Le carré de 3 est : 3² = 9. .Le carré de -3 est : (-3)² = 9. .Le carré de

2 est : (2)² = 2.

I) A quoi sert la fonction carrée ?

II) Qu"est ce que la fonction carrée ?

La fonction carrée a des propriétés caractéristiques en rapport avec les phénomènes naturels

qu"elle permet de décrire. Définition 2 : GRAPHIQUE DE LA FONCTION CARREE . La courbe représentative de la fonction carrée est une parabole d"équation y = x² . Voici un tableau de valeurs de la fonction carrée : On place dans un repère les points de coordonnées (x ; y = f(x) ) et on obtient le graphique partiel de la fonction carrée ci dessous. ( on joint les points par une courbe intuitive ) .

Propriété 1 : PARITE DE LA FONCTION CARREE

La fonction carrée est telle que pour tout nombre réel x Î IR on a x² = (-x)² ( le carré d"un nombre est égal au carré de l"opposé de ce nombre ) On dit alors que la fonction carrée est " paire ».

Une conséquence est que la courbe de la fonction carrée est symétrique par rapport à (oy).

Preuve

(-x)² = (-1´ x)² = (-1)² ´ x² = 1´x² = x² C.Q.F.D.

Exemples :

? (-1) ² = 1² = 1 ? (-10) ² = 10² = 100 ? (-2) ² = 2² = 2 x y -5-4-3-2-1012345 0 5 10 15 20

VALEURS de f(x) = x²

VALEURS de x

III) Propriétés de la fonction carrée

Valeurs de x -5 - 4,5 - 4 -3,5 -3 -2,5 -2 -1,5 -1 - 0,5 Valeur de x² 25 20,25 16 12,25 9 6,25 4 2,25 1 0,25 Valeurs de x 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 Valeur de x² 0,25 1 2,25 4 3,25 9 12,25 16 20,25 25 " La courbe est une parabole qui passe par l"origine » Propriété 2 : SENS DE VARIATION DE LA FONCTION CAREE . Pour la fonction carrée, on a le tableau de variations suivant : Valeurs de x -¥¥¥¥ 0 + ¥¥¥¥

Variations de

x ½¾¾® x² 0 La fonction carrée est décroissante sur ]- ¥¥¥¥ ; 0 ]. ( plus un nombre négatif est grand et plus son carré est petit ) La fonction carrée est croissante sur [ 0 ; + ¥¥¥¥ [. ( plus un nombre positif est grand et plus son carré est grand )

Preuve :

Démontrons que : si a < b < 0 alors a² > b² ( ce qui montrera la décroissance sur ]-

¥ ; 0 ] )

Supposons que a < b < 0

l"inégalité a² > b² est équivalente à a² - b² > 0 mais aussi à (a - b)(a +b) > 0 ( en factorisant )

or ( a - b) est négatif car a < b et ( a + b) est négatif car a et b sont négatifs, donc par produit,

(a - b)(a +b) est positif donc (a - b)(a +b) > 0 donc a² > b² finalement : si a < b < 0 alors a² > b² .

On démontre la croissance sur [0 ; +

¥ [ de la même façon :

Supposons que a > b > 0

Donc (a - b) est positif et (a + b) est positif donc (a - b)(a +b) > 0 donc a² > b² finalement : si a > b > 0 alors a² > b² . C.Q.F.D

Propriété 3 :

INEGALITE ET FONCTION CAREE .

la propriété suivante sert à démontrer que certaines fonctions en rapport avec la fonction

carrée sont croissantes ou décroissantes elle est démontrée ci dessus.

Quels que soient les nombres réels a et b :

Pour a et b négatifs : Si a < b alors a² > b²

Si on élève au carré les membres d"une inégalité entre des nombres négatifs alors on obtient

une inégalité de sens inverse. Pour a et b positifs : si a < b alors a² < b²

Si on élève au carré les membres d"une inégalité entre des nombres positifs alors on obtient

une inégalité du même sens que la première.

Exemples :

? -3 < -1 donc (-3)² > (-1)² donc 9 > 1. ? Si x < -4 alors x² > 16

? 2 < 5 donc 2² < 5² donc 4 < 25 . ? Si x > 3 alors x² > 9

Propriété 4 : SIGNE DE LA FONCTION CARREE.

Valeurs de x -¥¥¥¥ 0 + ¥¥¥¥

Variations

de x ½¾¾® x² 0

Signe de x²

+ 0 + Quel que soit le nombre réel x Î IR , le carré x² de ce nombre est positif ou nul

Preuve : si x est négatif alors x ´ x = x² est positif et si x > 0 alors x ´ x = x² > 0.

Exemple : (-2)² = 4 est positif

Propriété 5 : MINIMUM DE LA FONCTION CARREE. Preuve : Résulte immédiatement des variations de la fonction carrée. Application : ( x - 4)² + 10 est minimum pour x - 4 = 0 soit x = 4 et le minimum vaut 10.

Propriété 6 :

EQUATION ET FONCTION CARREE.

Preuve :

.Si a = 0 : x² = 0 Û x´x = 0 Û x = 0 ou x = 0 Û x = 0

.Si a < 0 : x² = a Û x² est négatif strict, ce qui est impossible car le carré d"un réel est positif.

Donc x² = a n"a pas de solution réelle.

.Si a > 0 : x² = a Û x² = ( a)² Û x² - (a)² = 0 Û (x - a)(x + a) = 0

Û x -

a = 0 ou x + a = 0 Û x = -a ou x = -a .

C.Q.F.D.

Application :

? x² = -7 n"a aucune solution dans IR et S = AE. ? x² = 7 a deux solutions x = 7 ou x = -7 donc S = {-7 , 7 }.

Propriété 7 :

INEQUATION ET FONCTION CARREE. (admis )

Applications :

? x² < -7 n"a aucune solution dans IR donc S = AE.

? x² > -7 S = IR. ? x² < 7 S = ]-7 ; 7 [. ? x² > 7 S = ]- ¥ ; -7 [ È ] 7 ; + ¥ [.

Le minimum de la fonction carrée vaut 0 et est atteint pour x = 0. Soit l" équation x² = a où a est un nombre réel donné et x un réel cherché. On distingue trois cas selon les valeurs de " a ». Pour a positif strict : Si x² = a alors x = a ou x = -a

Pour a nul: Si x² = 0 alors x = 0

Pour a négatif strict : x² = a est une inégalité fausse

Soient les inéquations x² > a , x² < a où a est un nombre réel donné et x un réel cherché.

On distingue 3 cas selon les valeurs de " a ».

Pour a positif strict: Si x² > a alors x < a ou x > a c"est à dire x Î]- ¥,-a [ È ]a , + ¥[.

Si x² < a alors -a < x < a c"est à dire x Î ]-a , a[. ( voir la courbe de la propriété 6 ci dessus pour une illustration ) Pour a = 0 : Si x² > 0 alors x ÎÎÎÎ IR- {0} x² < 0 est une inégalité fausse pour toute valeur de x ÎÎÎÎ IR Pour a négatif strict : Si x² > a alors x ÎÎÎÎ IR x² < a est une inégalité fausse pour tout x ÎÎÎÎ IR y = a a>0 -a a y = a a < 0quotesdbs_dbs16.pdfusesText_22