[PDF] [PDF] Suites numériques

8 nov 2011 · Vous savez déjà étudier une suite et calculer sa limite 2 1 Vrai ou faux Dans ce chapitre, nous nous préoccuperons surtout des suites à 



Previous PDF Next PDF





[PDF] QCM et VRAI-FAUX - Exercice 1 - Solution

La suite est donc strictement décroissante du rang 0 au rang 9 et strictement croissante à partir du rang 9 3 On considère trois suites u, v et w, définies sur N* et 



[PDF] VRAI OU FAUX ? 1 La suite (−2n) diverge vers −∞ VRAI car lim 2

VRAI Elle est minorée par 0, et toute suite décroissante minorée converge 7 Une suite non majorée a pour limite +∞ FAUX Pour fabriquer un contre- exemple, 



[PDF] Limites : exemples, contre-exemples, difficultés

Toute suite croissante non majorée tend vers +∞ Vrai : voir ROC II) Opérations sur les limites : Vrai ou faux ? (Questions possibles au bac pour une Restitution 



[PDF] Chapitre 2, exercice 28 1 Vrai : si la suite (u n)n∈N est majorée, la

Néanmoins, on a vu en cours que u était divergente 7 Faux : toute suite positive de limite nulle est décroissante `a partir d'un certain rang Démonstration



[PDF] Enoncé et Corrigé - Maths-francefr

Deux suites adjacentes sont convergentes et ont même limite Partie B 1) Faux 2) Vrai 3) Faux 4) Faux Démonstrations 1) Pour tout entier naturel n, posons 



[PDF] Suites numériques

8 nov 2011 · Vous savez déjà étudier une suite et calculer sa limite 2 1 Vrai ou faux Dans ce chapitre, nous nous préoccuperons surtout des suites à 



[PDF] Les suites - Partie II : Les limites

à termes strictement positifs et décroissante converge vers 0 Vrai Faux Exercice 4 Cocher les réponses vraies Toute suite géométrique de raison strictement 



[PDF] Chapitre 2 :Suites réelles

L'ensemble des suites d'éléments de E indexées par K est noté K on parle de suites à valeurs réelles, ou suites réelles Si C = Divers vrai/faux classiques :



[PDF] Feuille dexercices 4 Suites et séries de fonctions

Exercice 1 : Vrai ou faux (I) Dire pour chacune des propriétés suivantes si elle est vraie ou fausse La prouver dans le premier cas, donner un contre- exemple 

[PDF] Les Suites Arithmético - Géometrique

[PDF] Les suites arithmético géométriques

[PDF] Les Suites arithmétique

[PDF] les Suites Arithmetique

[PDF] Les suites arithmétique ou géométriques

[PDF] Les suites arithmétiques

[PDF] les suites arithmétiques ? rendre jeudi

[PDF] Les suites arithmétiques avec sigma

[PDF] les suites Arithmétiques et géométrique DM

[PDF] Les suites arithmétiques et géométriques

[PDF] les suites arithmétiques et géométriques

[PDF] Les suites arithmétiques et géométriques (2)

[PDF] Les suites arithmetiques geometriques

[PDF] Les suites arithmétiques ou géométriques

[PDF] les Suites arithmétiques ou géométriques

Université Joseph Fourier, Grenoble Maths en Ligne

Suites numériques

Bernard Ycart

Vous savez déjà étudier une suite et calculer sa limite. La nouveauté réside dans la rigueur. La notion de convergence a une définition mathématique, que vous devez connaître et savoir appliquer. Ne vous contentez pas de comprendre les théorèmes, ils sont pour la plupart très naturels; travaillez sur les démontrations. L"idéal serait que vous soyez capables de les refaire.

Table des matières

1 Cours 1

1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Convergence des suites monotones . . . . . . . . . . . . . . . . . . . . . 8

1.5 Comparaison de suites . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Suites de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Suites à valeurs complexes . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Entraînement 20

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Compléments 37

3.1 Les lapins de Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Limite sup et limite inf . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Dichotomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Fractions continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Applications contractantes . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Méthode de Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 novembre 2011

Maths en LigneSuites numériquesUJF Grenoble1 Cours

1.1 Vocabulaire

Définition 1.SoitEun ensemble. On appellesuite à valeurs dansEune application deNdansE. L"ensemble des suites à valeurs dansEest notéEN. Dans ce chapitre, nous nous préoccuperons surtout des suites à valeurs dansR(nous dirons aussi suites de réels) et très peu des suites à valeurs dansC(suites de complexes). Une suite à valeurs dansRsera typiquement notée(un)n?Nou simplement(un)quand il n"y a pas d"ambiguïté. Les entiersnsont lesindicesde la suite et leurs imagesunsont lestermesde la suite. La suite(un)n?Nest un objet différent de l"ensemble{un, n?N}. En particulier une suite aura toujours une infinité de termes, même si ces termes ne prennent qu"un nombre fini de valeurs différentes. Par exemple, pourun= (-1)n, la suite est(un) = (1,-1,1,-1,1,-1,...), et l"ensemble{un, n?N}est l"ensemble {-1,1}. Il existe deux manières de définir une suite de réels à partir d"une fonction : •définition explicite : ?n?N, un=f(n), oùfest une fonction deRdansR. Par exemple :

1.?n?N, un=n

2.?n?N, un= 1/(n+ 1)

3.?n?N, un= 2-n.

•définition par récurrence : u

0?R,et?n?N, un+1=F(un),

oùFest une fonction deRdansR. Les mêmes exemples peuvent être définis par :

1.u0= 0et?n?N, un+1=un+ 1

2.u0= 1et?n?N, un+1=un/(un+ 1)

3.u0= 1et?n?N, un+1=un/2.

Voici deux exemples génériques.

Définition 2.

1. Soitaun réel. On appellesuite arithmétiquede raisonaune suite définie par

u 0?Ret ?n?N, un+1=un+a .

2. Soitrun réel. On appellesuite géométriquede raisonrune suite définie par

u 0?Ret ?n?N, un+1=run. 1

Maths en LigneSuites numériquesUJF GrenobleOn vérifie facilement par récurrence qu"une suite arithmétique de raisonaa pour

terme généralun=u0+na. De même, une suite géométrique de raisonra pour terme généralun=u0rn. Définition 3.Soit(un)n?Nune suite de réels. On dit que la suite(un)est : •constantesi?n?N, un+1=un; •croissantesi?n?N, un+1>un; •décroissantesi?n?N, un+16un; •strictement croissantesi?n?N, un+1> un; •strictement décroissantesi?n?N, un+1< un; •monotonesi elle est croissante ou décroissante •majoréesi{un,n?N}est majoré; •minoréesi{un,n?N}est minoré; •bornéesi{un,n?N}est borné; •périodiquesi?p?N?,?n?N, un+p=un. Il arrive qu"une suite ne soit définie que sur une partie deN: par exemple(1/n)n?N?. On sera également amené à réduire la suite aux indices au-delà d"un certain entiern0: (un)n>n0. L"expression " à partir d"un certain rang » reviendra souvent dans ce qui suit. Dire que la suite(un)n?Npossède la propriétéPà partir d"un certain rangsignifie que la suite(un)n>n0la possède pour un certainn0. On dit aussi "Pest vraie pournassez grand ». Voici quelques exemples. Définition 4.Soit(un)n?Nune suite de réels. On dit que la suite(un)est •constante à partir d"un certain rang (on dit aussi stationnaire) si?n0?N,?n> n

0, un+1=un;

•croissante à partir d"un certain rang si?n0?N,?n>n0, un+1>un; •périodique à partir d"un certain rang si?n0?N,?p?N?,?n>n0, un+p= u n; Par exemple, la suite(?4/(n+ 1)?)n?Nest constante à partir du rangn0= 4. La suite des décimales de1/90est constante à partir du rangn0= 2. La suite(|n-5|)n?N est croissante à partir du rangn0= 5. La suite des décimales de53/2475est périodique, de périodep= 2à partir du rangn0= 3. Quel que soit le nombre rationnelx, la suite des décimales dexest périodique à partir d"un certain rang. Si la suite(un)n?Nest " majorée à partir d"un certain rang », alors elle est majorée tout court. En effet siun6Mpour toutn>n0, alors pour tout entiern?N, u n6max{u0,u1,...,un0-1,M}.

De même une suite minorée à partir d"un certain rang est minorée, une suite bornée à

partir d"un certain rang est bornée. Les opérations sur les réels s"étendent aux suites en des opérations terme à terme. •addition :(un) + (vn) = (un+vn), 2 Maths en LigneSuites numériquesUJF Grenoble•multiplication :(un)(vn) = (unvn), •multiplication par un réel :λ(un) = (λun), •comparaison :(un)6(vn)?? ?n?N, un6vn. L"addition a les mêmes propriétés que celle des réels :RNmuni de l"addition est un groupe commutatif. Muni de l"addition et de la multiplication par un réel, c"est un espace vectoriel. Cependant, le produit de deux suites peut être nul sans que les deux suites le soient :RNmuni de l"addition et de la mutiplication est un anneau commutatif non intègre. Etant donnée une suite(un), on appellesuite extraiteousous-suite, une suite formée de certains termes de(un), c"est-à-dire une suite de la forme(vk) = (u?(k)), où?est une application strictement croissante deNdansN. Par exemple si(un)est la suite géométrique((-2)n), et?(k) = 2k, alors(vk) = (4k): on a extrait de la suite(un)la suite des termes d"indice pair.

1.2 Convergence

On dit que la suite(un)convergevers un réell(sa limite) si tout intervalle ouvert contenantl, contient aussi tous lesunpournassez grand. Définition 5.Soit(un)n?Nune suite de réels etlun réel. On dit que la suite(un) converge versl, (outend versl, oua pour limitel) si : ?ε >0,?n0?N,?n>n0,|un-l|6ε .

On notera :

lim n→∞un=lou bienun----→n→+∞l . Autrement dit, tout intervalle ouvert centré enlcontient tous les termes de la suite à partir d"un certain rang. Observons que le rangn0à partir duquel tous les termes de la suite restent dans l"intervalle[l-ε,l+ε], dépend deε. La figure 1 représente les50 premiers termes de la suite(un) = (1 + sin(n)/n)n?N?. La limite estl= 1. On a : |un-l|=? ????sin(n)n ????61n Fixonsε >0(sur la figureε= 0.05). Posonsn0=?1/ε?+ 1(n0= 21pourε= 0.05). Pour toutn>n0,1/n < ε, donc|un-l|< ε. Sur la figure 1, on constate en fait que u n?[0.95,1.05]pourn>18. On étend la notion de convergence aux limites infinies de la façon suivante.

Définition 6.Soit(un)une suite de réels.

1. On dit que(un)tend vers+∞si

?A?R,?n0?N,?n>n0, un>A . 3 Maths en LigneSuites numériquesUJF Grenoble0 5 10 15 20 25 30 35 40 45 50

0.00.20.40.60.81.01.21.41.61.82.0.

u n Convergence de 1+sin(n)/n

¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨Figure1 -Convergence de la suite1 + sin(n)/n.

2. On dit que(un)tend vers-∞si

?A?R,?n0?N,?n>n0, un6A . Il est commode de pouvoir dire qu"une suite " tend vers l"infini », mais cela induit une certaine ambiguïté sur la notion de convergence. De même qu"il faut voirεcomme un " petit » réel (proche de0), dans la définition

6 il faut comprendreAcomme grand (proche de l"infini). Une suite tend vers+∞si

ses termes restent au-dessus de n"importe quelle quantité, à partir d"un certain rang.

Voici quelques exemples classiques.

•Suites arithmétiques :(un) = (u0+an)

1. Sia >0,(un)tend vers+∞.

2. Sia= 0,(un)est constante (tend versu0).

3. Sia <0,(un)tend vers-∞.

•Suites géométriques :(un) = (u0rn)

1. Siu0= 0,(un)est constante (tend vers0).

2. Sir6-1, etu0?= 0,(un)ne converge pas.

3. Si-1< r <1,(un)tend vers0.

4. Sir= 1,(un)est constante (tend versu0).

5. Sir >1etu0>0,(un)tend vers+∞.

6. Sir >1etu0<0,(un)tend vers-∞.

•Suites de Riemann :(un) = (nα) 4 Maths en LigneSuites numériquesUJF Grenoble1. Siα >0,(un)tend vers+∞.

2. Siα= 0,(un)est constante (tend vers1).

3. Siα <0,(un)tend vers0.

Pour bien comprendre la notion de convergence, nous allons en étudier quelques consé- quences faciles, rassemblées dans la proposition suivante.

Proposition 1.Soit(un)une suite de réels :

1. si(un)converge, alors sa limite est unique;

2. si(un)converge vers une limite finie, alors(un)est bornée;

3. si pour toutn,un?Net si(un)converge vers une limite finie, alors(un)est

constante à partir d"un certain rang;

4. si(un)converge versl, alors toute suite extraite de(un)converge versl;

5. si les deux suites extraites(u2k)k?Net(u2k+1)k?Nconvergent vers la même limite

l(finie ou infinie), alors(un)n?Nconverge versl. Démonstration: Les démonstrations des 5 points se ressemblent.

1. Supposons que(un)vérifie la définition 5 pour deux réelsletl?distincts. Posons

ε=|l-l?|/3. Alors les intervalles[l-ε,l+ε]et[l?-ε,l?+ε]sont disjoints. À partir d"un certain rang, lesundevraient appartenir aux deux à la fois : c"est impossible.

2. Fixonsε >0, etn0tel queunreste dans l"intervalle[l-ε,l+ε]pour toutn>n0.

Alors :

?n?Nun6max{u0,u1,...,un0-1,l+ε}, et ?n?Nun>min{u0,u1,...,un0-1,l-ε}.

3. Soitlla limite. Siln"était pas un entier, pourεsuffisamment petit, l"intervalle

[l-ε,l+ε]ne contiendrait aucun entier, donc aucun desun. Doncldoit être un entier. Posonsε= 1/2. L"intervalle[l-ε,l+ε]ne contient qu"un seul entier,l. Comme à partir d"un certain rang tous lesunsont dans cet intervalle, et qu"ils sont tous entiers, ils sont tous égaux àl.

4. Soit(u?(k))k?Nune suite extraite de(un)n?N. Comme?est strictement croissante,

pour toutn0il existek0tel que?(k)>n0pour toutk>k0. Si tous les(un)sont dans l"intervalle[l-ε,l+ε]à partir du rangn0, tous lesu?(k)sont dans le même intervalle à partir du rangk0.

5. Fixonsε >0. Soitk0tel queu2kreste dans l"intervalle[l-ε,l+ε]pour tout

k>k0. Soitk?0tel queu2k+1reste dans l"intervalle[l-ε,l+ε]pour toutk>k0. Alors pour toutn>max{2k0,2k?0+1},un?[l-ε,l+ε]. La démonstration pour une limite infinie est analogue. 5 Maths en LigneSuites numériquesUJF Grenoble1.3 Opérations sur les limites La combinaison de la notion de limite avec les opérations habituelles sur les suites se passe sans trop de mauvaises surprises : globalement, les résultats que l"on attend

sont vrais. Nous les énoncerons dans le théorème 1. Les démonstrations sont basées sur

le lemme suivant.

Lemme 1.

1. La somme de deux suites convergeant vers0converge vers0.

2. Le produit d"une suite convergeant vers0par une suite bornée, converge vers0.

Démonstration:

1. Soient(un)et(vn)deux suites convergeant vers0. Fixonsε >0. Soitn0tel

que pour toutn>n0,|un|< ε/2. De même, soitn1tel que pour toutn>n1, |vn|< ε/2. Alors pour toutn>max{n0,n1}, |un+vn|6|un|+|vn|6ε2 +ε2 d"où le résultat.

2. Si la suite(un)est bornée, alors il existeM >0tel que pour tout entiern,

|un|6M. Soit(vn)une suite convergeant vers0. Fixonsε >0. Soitn0tel que pour toutn>n0,|vn|6ε/M. Pour toutn>n0, on a donc : |unvn|=|un||vn|6M|vn|6MεM

D"où le résultat.

Théorème 1.

1. La somme de deux suites convergeant vers une limite finie est convergente et sa

limite est la somme des limites.

2. Le produit de deux suites convergeant vers une limite finie est convergent et sa

limite est le produit des limites. Démonstration: Pour nous ramener au lemme 1, observons d"abord qu"une suite(un) a pour limitel?Rsi et seulement si la suite(un-l)tend vers0.

1. Si(un)converge verslet(vn)converge versl?, alors(un-l)et(vn-l?)convergent

vers0. Donc(un-l+vn-l?)converge vers0d"après le point1.du lemme 1, d"où le résultat. 6

Maths en LigneSuites numériquesUJF Grenoble2. Si(un)converge verslet(vn)converge versl?, nous voulons montrer que(unvn-

ll ?)converge vers0. Ecrivons : u nvn-ll?=un(vn-l?) + (un-l)l?. Il suffit donc de montrer séparément que les deux suites(un(vn-l?))et((un-l)l?) tendent vers0, d"après le premier point du lemme 1. Mais chacune de ces deux suites est le produit d"une suite convergeant vers0par une suite bornée ((un)est bornée car elle est convergente). D"où le résultat, par le point2.du lemme 1. Le théorème 1 est l"outil de base pour étudier des convergences de suites à partir des exemples classiques de la section précédente. On utilise aussi la composition par une fonction continue. On peut donner deux définitions équivalentes de la continuité, dont l"une est parfaitement adaptée aux suites convergentes. Définition 7.Soitfune fonction deRdansRetxun réel. On dit quefestcontinue au pointxsi et seulement si, pour toute suite(un)convergeant versx, la suite des images(f(un))converge versf(x). Toutes les fonctions qui interviennent dans ce cours sont continues en tout point où elles sont définies, et nous le supposerons pour l"instant. Par exemple, la fonction f:x?→1/xest continue en tout point deR?. Donc si une suite(un)converge vers l?= 0, la suite des inverses(1/un)converge vers1/l. En utilisant le théorème 1, on en déduit que le quotient de deux suites convergentes converge vers le quotient des limites, pourvu que la limite du dénominateur soit non nulle. Voici un exemple de calcul de limite, résumant l"ensemble des techniques que nous avons vues jusqu"ici. Pour toutn?N?, posons uquotesdbs_dbs46.pdfusesText_46