[PDF] [PDF] Lois de probabilité à densité Loi normale - Lycée dAdultes

31 mar 2015 · 1 3 Loi uniforme : densité homogène 3 Loi normale d' espérance µ et d'écart type σ 13 1 TERMINALE S 



Previous PDF Next PDF





[PDF] LOIS À DENSITÉ - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 1 LOIS À DENSITÉ I Loi de probabilité à densité 1) Variable aléatoire continue Exemples :



[PDF] Lois de probabilité à densité Loi normale - Lycée dAdultes

31 mar 2015 · 1 3 Loi uniforme : densité homogène 3 Loi normale d' espérance µ et d'écart type σ 13 1 TERMINALE S 



[PDF] FICHE DE RÉVISION DU BAC - Studyrama

Etude de fonctions – exponentielle – intégration – continuité – variable aléatoire – loi binomiale – espérance – écart-type Plan du cours 1 Lois à densité 2



[PDF] Lois à densité - Lycée Pierre Gilles de Gennes

Terminale S Chapitre H - Lois à densité Loi normale centrée réduite J (0, 1) Théorème de Moivre Laplace (admis) • Connaître la fonction de densité de la loi



[PDF] Lois de probabilité continues - Maths-francefr

Lois de probabilité continues I Densité de probabilité et loi de probabilité 1) Variable aléatoire continue Une variable aléatoire qui peut prendre comme 



[PDF] Terminale ES - Lois à densité sur un intervalle I - Parfenoff org

intervalle I = [a ;b] de IR On dit que suit la loi à densité Si : • est continue sur l'intervalle I



[PDF] Introduction aux lois à densité - Pédagogie de lAcadémie de Nice

UN EXEMPLE D'INTRODUCTION DES LOIS A DENSITE EN TERMINALE S AU LYCEE DU COUDON (83) Outil : Exploitation de vidéos sélectionnées sur 



[PDF] Terminale S - Lois de probabilités à densité - Physique et Maths

X est une variable aléatoire qui suit la loi uniforme sur l'intervalle [-2 ; 3] : 1 Déterminer la fonction de densité de probabilité 2 Calculer : 3 Déterminer P [1 ; 2, 



[PDF] Lois à densité - Euler

Loi à densité Définitions Si X est une variable aléatoire qui à chaque issue d'un univers Ω associe un élément de l'intervalle I, et si f est une fonction (continue 



[PDF] Chapitre 8 Lois de probabilité à densité - Perpendiculaires - Free

Terminale ES Cette courbe représente une fonction f définie sur [0; 6[ et est appelée densité de probabilité de la loi de X (a) Soit a et b deux nombres réels de 

[PDF] experience iss

[PDF] recherche expérimentale définition

[PDF] loi ? densité terminale s

[PDF] iss expérience scientifique

[PDF] méthode expérimentale exemple

[PDF] experience proxima

[PDF] méthode quasi expérimentale

[PDF] aquapad

[PDF] recherche expérimentale exemple

[PDF] exposé sur le gaspillage de l'eau

[PDF] le gaspillage de l'eau texte argumentatif

[PDF] 5 est un diviseur de 65

[PDF] gaspillage de l'eau dans le monde

[PDF] fonctions de plusieurs variables cours

[PDF] fonctions de plusieurs variables exercices corrigés

[PDF] Lois de probabilité à densité Loi normale - Lycée dAdultes

DERNIÈRE IMPRESSION LE31 mars 2015 à 14:11

Lois de probabilité à densité

Loi normale

Table des matières

1 Lois à densité2

1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Densité de probabilité et espérance mathématique. . . . . . . . . . 2

1.3 Loi uniforme : densité homogène. . . . . . . . . . . . . . . . . . . . 3

1.3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Espérance mathématique. . . . . . . . . . . . . . . . . . . . 3

1.3.3 Application : méthode de Monte-Carlo. . . . . . . . . . . . 4

1.4 Loi exponentielle : loi sans mémoire. . . . . . . . . . . . . . . . . . 5

1.4.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Loi sans mémoire ou sans vieillissement. . . . . . . . . . . . 6

1.4.3 Espérance mathématique. . . . . . . . . . . . . . . . . . . . 6

1.4.4 Un exemple. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.5 Application à la physique. . . . . . . . . . . . . . . . . . . . 7

1.5 Lien entre le discret et le continu. . . . . . . . . . . . . . . . . . . . 9

2 La loi normale9

2.1 Du discret au continu. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 La loi normale centrée réduite. . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 La densité de probabilité de Laplace-Gauss. . . . . . . . . . 9

2.2.2 Loi normale centrée réduite. . . . . . . . . . . . . . . . . . . 10

2.2.3 Calcul de probabilités. . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Espérance et variance. . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Probabilité d"intervalle centré en 0. . . . . . . . . . . . . . . 12

2.3 Loi normale générale. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Loi normale d"espéranceμet d"écart typeσ. . . . . . . . . 13

2.3.2 Influence de l"écart type. . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Approximation normale d"une loi binomiale. . . . . . . . . 15

2.3.4 Théorème Central-Limit (hors programme). . . . . . . . . . 17

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Lois à densité

1.1 Introduction

Lorsque l"on s"intéresse à la durée d"une communication téléphonique, à la durée

de vie d"un composant électronique ou à la température de l"eau d"un lac, la va- riablealéatoireXassociée au temps ou à la température, peut prendre une infinité de valeurs dans un intervalle donné. On dit alors que cette variableX est continue (qui s"oppose à discrète comme c"est le cas par exemple dans la loi binomiale). On ne peut plus parler de probabilité d"événements car les événements élémen- On contourne cette difficulté en associant à la variable X un intervalle deRet en définissant une densité de probabilité.

1.2 Densité de probabilité et espérance mathématique

Définition 1 :On appelledensité de probabilitéd"une variable aléatoire continue X, toute fonctionfcontinue et positive sur un intervalle I ([a;b],[a;+∞[ ouR) telle que :

•P(X?I) =?

(I)f(t)dt=1 •Pour tout intervalle J= [α,β]inclus dans I, on a :P(X?J) =?

αf(t)dt

D"autre part la fonctionFdéfinie par :F(x) =P(X?x)est appelée lafonction de répartitionde la variableX

F(x) =?

x af(t)dtou lima→-∞? x af(t)dt

Remarque :

•Comme la fonctionfest continue et

positive, la probabilitéP(X?I)cor- respond à l"aire sous la courbeCf.

Elle vaut alors 1 u.a.

•La probabilitéP(X?J), avec J=

[α;β], correspond à l"aire du domaine délimité parCf, l"axe des abscisse et les droites d"équationx=αety=β. 1

P(X?J)P(X?I)

1 u.a.

Cf βO •Comme la probabilité que X prenneune valeur isolée est nulle,que l"in- tervalle J soit ouvert ou fermé im- porte peu. Ainsi :

P(X?[α,β]) =P(X?[α,β[)

=P(X?]α,β]) =P(X?]α,β[) 1 F(x)C f x O

PAULMILAN2 TERMINALES

1. LOIS À DENSITÉ

•L"écriture(X?I)est une notation abusive carXn"est pas un nombre, mais la fonction qui associe une issue à un nombre. Elle prolonge la notation déjà utilisée pour des variables discrètes(X=a) Définition 2 :L"espérance mathématique d"une variable aléatoire continue X, de densitéfsur I, est :

E(X) =?

(I)t f(t)dt

1.3 Loi uniforme : densité homogène

1.3.1 Définition

Définition 3 :Une variable aléatoire X suit une loi uniforme dans l"intervalle I= [a,b], aveca?=b, lorsque la densitéfest constante sur cet intervalle. On en déduit alors la fonctionf: f(t) =1 b-a ConséquencePour tout intervalle J= [α,β]inclus dans I, on a alors :

P(X?J) =β-α

b-a=longueur de Jlongueur de I

La probabilité est donc proportionnelle

à la longueur de l"intervalle considéré.

1 b-a aαβbP(X?J) O

1 u.a.

Exemple :Onchoisitunnombreréelauhasarddansl"intervalle[0;5].Onassocie àXle nombre choisi. Quelle est la probabilité que ce nombre soit supérieur à 4? compris entreeetπ?quotesdbs_dbs2.pdfusesText_2