[PDF] [PDF] Chapitre 6 Problèmes de transport

Le problème général de transport sous l'hypothèse que l'offre totale égale la Il s'agit de la classe de problèmes qui traite des questions d'affectation de tâches 



Previous PDF Next PDF





[PDF] Transports industriels routiers, un problème daffectation - Numdam

moyens de transport aux demandes s'avèrent un délicat problème Inspiré de la méthode « Hongroise », un algorithme £ affectation autorisant le réemploi de



[PDF] Problèmes de transport - formulation des problèmes daffectation - FR

31 mar 2009 · ce cas Page 13 Problèmes de Transport Solution des problèmes de transport Problèmes d'affectation Problème de transbordement Conclusion



[PDF] Chapitre 6 Problèmes de transport

Le problème général de transport sous l'hypothèse que l'offre totale égale la Il s'agit de la classe de problèmes qui traite des questions d'affectation de tâches 



[PDF] Problème de flot, daffectation et de transport - cloudfrontnet

Problème de flot, d'affectation et de transport Réalisé par : OMARI Redouane DACHRY Abdelfattah Encadré par : Mr LOUMANI Année universitaire 2008 / 



[PDF] Problèmes de transport - Thèses

auteurs ont résolu le problème d'affectation associé au TOPTW, en se basant sur la solution obtenue, l'algorithme décide quels arcs, il doit insérer dans ce 



[PDF] MODELISATION ET RESOLUTION DUN PROBLEME D

27 avr 2001 · MOTS-CLES : programmation linéaire en nombres entiers, affectation de personnels, optimisation, transport aérien 1 INTRODUCTION La 



[PDF] Chapitre 5 – Solutions des exercices de révision - HEC Montréal

La figure ci-dessous illustre un réseau associé à ce problème destinations et les coûts de traitement aux coûts de transport, le problème des hauts fourneaux problème d'affectation, la différence venant du fait que les camions 



[PDF] Problème dynamique de transport à la demande - Université de Tours

Problème dynamique de transport à la La règle d'affectation Attention, on ne peut changer l'affectation d'une requête que si aucun des deux sommets n'a 

[PDF] exos corrigés problème d'affectation recherche opérationnelle

[PDF] développement limité fonction plusieurs variables

[PDF] telecharger exercices de recherche operationnelle

[PDF] recherche opérationnelle exercices corrigés gratuit

[PDF] cours de recherche operationnelle gratuit pdf

[PDF] programmation linéaire exercices corrigés simplex

[PDF] examen recherche opérationnelle corrigé

[PDF] exercice corrigé methode simplexe pdf

[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

Chapitre 6

Problèmes de transport

Il s"agit de déterminer la façon optimale d"acheminer des biens à partir de m entrepôts et de

les transporter vers n destinations et cela à moindre coût. Nous allons faire l"hypothèse que

toute la marchandise de tous les entrepôts doit être acheminer vers les différentes destina-

tions.

Nous allons illustrer ce problème à partir de l"exemple suivant.EntrepôtSherbrookeDrummondvilleSt-GeorgesRimouskiOffre

Montréal147 $121 $344 $552 $450 T

Québec241 $153 $102 $312 $450 T

Chicoutimi451 $364 $557 $285 $750 T

Demande400 T450 T550 T250 T1650 T

On notera que l"offre totale est bien égale à la demande ce qui est conforme à l"hypothèse

ci-dessus.Montréal

Québec

ChicoutimiSherbrooke

Drummondville

St-Georges

Rimouski

1

2CHAPITRE 6. PROBLÈMES DE TRANSPORT

Mise en équation

Le problème général de transport sous l"hypothèse que l"offre totale égale la demande,

s"énonce comme suit. Notons les sources parS1;S2;:::;SmetD1;D2;:::;Dnles destina- tions. On introduit les notations suivantes : x ij=quantité transportée deSiàDj, c ij=coût unitaire du transport deSiàDj, a i=offre de la sourceSi, b j=demande de la destinationDj. On suppose que lesaisont positifsai0et de même pour lesbj0. Il s"agit de minimiser le coût de transport. La fonction objective s"écrit : z=X i;jc ijxij sous les contraintes

Offre :

nX j=1x ij=ai08i= 1;2;:::;m;

Demande :

mX i=1x ij=bj08j= 1;2;:::;n;

Positivité :xij0:

Proposition

6.0.1 Une condition nécessaire et suffisante pour que le problème de trans-

port admet une solution optimale est que m X i=1a i=nX j=1b j: Démonstration:Sixest une solution qui vérifie les contraintes, on a que n X j=1x ij=ai=)X i;jx ij=mX i=1a i m X i=1x ij=bj=)X i;jx ij=nX j=1b j

Ceci implique

mX i=1a i=nX j=1b j

6.1. PROPRIÉTÉS DE LA MATRICEA3

Inversement, si

Pm i=1ai=Pn j=1bj=T, on pose x ij=aibjT 0: Montrons que ce choix dexvérifie les contraintes. En effet n X j=1x ij=1T n X j=1a ibj=aiP n j=1bjT =ai et mX i=1x ij=1T m X i=1a ibj=bjP m i=1aiT =bj

De plus, l"ensemble des solutions réalisables est borné. Il suffit d"observer que, pour une paire

d"indices i et j,nX j=1x ij=ai0 =)0xijai Par conséquent, le problème admet une solution optimale.6.1 Propriétés de la matriceA Le problème de transport s"écrit de manière matricielle minz=ctx; Ax=d; x0:(6.1) oùx= (x11;x12;:::;x1n;x21;:::;x2n;:::xmn). C"est-à-dire que l"on déroule la matricexij suivant les lignes. On fait de même pourc= (c11;:::;c1n;c21;:::;cmn). Il y anmvariables etn+mcontraintes. Le vecteurdcorrespond àd= (a1;a2;:::;am;b1;b2;:::;bn).

Illustrons la matriceApourm= 3etn= 4.

A=2 6

666666641 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 13

7

77777775

La somme des n premières lignes donne

L

1+L2++Ln= (1;1;:::;1):

4CHAPITRE 6. PROBLÈMES DE TRANSPORT

Aussi, aa somme des lignesn+ 1àn+mdonne

L n+1+Ln+2++Ln+m= (1;1;:::;1):

Si on combine ces deux résultats, on obtient

L

1+L2++LnLn+1Ln+2 Ln+m= 0

Ceci implique que

rg(A)< m+n:

Proposition

6.1.1 On a les propriétés suivantes pour la matriceA.

Chaque colonne contient exactement deux entrées non nulles et qui sont égales à 1.

Le rang deAest égal àm+n1.

Chacune des lignes est une combinaisons linéaire des autres lignes. Il y a toujours une ligne de trop que l"on peut éliminer. Il y a exactementm+n1variables de base réalisables. Donnons une idée de la preuve que le rang deAestm+n1. En renumérotant si nécessaire, il suffit de montrer que les lignesL2;L3;:::;Lm+nsont linéairement indépendantes. Pour cela, posons

2L2+3L3++m+nLm+n= 0:

A cause de la structure particulière de la matrice, ceci implique immédiatement que m+1=m+2==m+n= 0:

Par la suite, on aura les relations

2+m+1= 0 =)2= 0;

3+m+1= 0 =)3= 0;...

m+m+1= 0 =)m= 0:

6.2 Dual du problème de transport

Un problème de transport est de la forme

minz=X i;jc ijxij=ctx

6.2. DUAL DU PROBLÈME DE TRANSPORT5

sous les contraintes

8i= 1;2;:::;mPn

j=1xij=ai()A1x=a

8j= 1;2;:::;nPm

i=1xij=bj()A2x=b x ij0()x0

Sous forme compact, ceci s"écrit

minz=ctx 2 6 64A
1 A1 A 2 A23 7 75x2
6 64a
a b b3 7 75
x0:

Le dual est

maxz=atu+atu+btv+btv

At1At1At2At22

6 64u
u v v 3 7 75c
u +;u;v+;v0:

C"est-à-dire avecu=u+uetv=v+v, on obtient

maxz=atu+btv A t1u+At2vc u;vlibres Or A t1u+At2vc()ui+vjcij Supposons quexsoit la solution optimale du problème. Selon les conditions KKT, on a x t(cAt1uAt2v) = 0

On a les relations

u i+vj=cij8xi;j>0 Sixest solution de base non dégénéré, on a bien la décompositionui+vj=cijpour les indices des variables de base.

6CHAPITRE 6. PROBLÈMES DE TRANSPORT

6.3 Méthode du simplexe appliquée au problème de trans-

port

Voici la démarche qui sera utilisée :

a)

T rouverune solution réalisable de b ase.

quotesdbs_dbs35.pdfusesText_40