[PDF] [PDF] 1 Programmation linéaire

Document 4 : Corrigé des exercices d'optimisation linéaire 1 Programmation Le tableau de départ pour la méthode du simplexe est donc : x1 x2 x3 x4 x5 3



Previous PDF Next PDF





[PDF] Exercice 121 Résoudre par le simplexe Max x1 + 2x2 sous −3x1

2) Tableau du simplexe (forme canonique ) x1 x2 x3 x4 x5 z b Exercice 1 2 5 Max x1 sous ⎛ Exercice 1 2 3 Résoudre par la méthode du simplexe



[PDF] 1 Programmation linéaire

Document 4 : Corrigé des exercices d'optimisation linéaire 1 Programmation Le tableau de départ pour la méthode du simplexe est donc : x1 x2 x3 x4 x5 3



[PDF] Algorithme du Simplexe

20 avr 2007 · MATH-F-306 – 3 Algorithme du Simplexe Exercice 3 1 Exercice 3 1 On consid`ere le poly`edre S de R5 défini par les conditions suivantes :



[PDF] exercices corrigés

17 déc 2012 · 2 5 Méthode géométrique et Simplexe 2 5 1 Correction de l'exercice 1 5 1 de la page 12 Il s'agit d'un problème de programmation linéaire



[PDF] Simplexe forme Tableau Exercice corrigés Exercice N° 1 : Soit le

Simplexe forme Tableau Exercice corrigés Exercice N° 1 : Soit le problème de Programmation linéaire suivant : Max Z = 3x1 + 2x2 x1 + 2x2



[PDF] - Exercices de TD - 1 Modélisation - LIRMM

Maximiser le gain de l'année par la méthode du simplexe Effectuer tous les choix possibles de variable entrante lors du premier pivot d Repérer sur le graphique 



[PDF] 174 EXERCICES SUPPLÉMENTAIRES — PARTIE II

Exercice 4 5 1 [Illustration graphique] Illustrez graphiquement l'itération de l' algorithme L'algorithme du simplexe primal passe d'un point extrême réalisable à 



[PDF] CORRIGE du TD N°3 : PROGRAMMATION LINEAIRE EXERCICE 1

Résolvons ce problème de maximisation par la méthode des tableaux simplexe La forme standard associée est : [ ] Sous les contraintes { D'où le premier 



[PDF] Recherche opérationnelle - LMPA

2 2 4 Utilisation de la méthode du simplexe lorsque la solution optimale n'existe pas 60 2 2 5 Utilisation de la méthode du 2 2 6 Exercices récapitulatifs



[PDF] Correction du Contrôle Continu no 1

Exercice 1 : On consid`ere le probl`eme d'optimisation suivant : (PI) Phase I : Nous pouvons maintenant débuter l'application de l'algorithme du simplexe en 

[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

[PDF] cobb douglas explication

[PDF] revenu d'équilibre formule

[PDF] multiplicateur des dépenses publiques macroéconomie

[PDF] fonction de cobb douglas pdf

[PDF] revenu d'équilibre et revenu de plein emploi

[PDF] fonction cobb douglas ses

[PDF] multiplicateur de depense publique(definition)

[PDF] revenu d'équilibre en économie fermée

[PDF] 1 Programmation linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE

U.F.R. SEGMI Année universitaire 2012 - 2013

Master d"économie Cours de M. Desgraupes

Méthodes Numériques

Document 4 : Corrigé des exercices d"optimisation linéaire1 Programmation linéaire 1 Méthode du simplexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Raffinerie de pétrole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Méthode des variables ajoutées . . . . . . . . . . . . . . . . . . . . . . . . 6 Indices d"octane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Fabrique de pièces détachées . . . . . . . . . . . . . . . . . . . . . . . . . 13 Plan de production de moteurs . . . . . . . . . . . . . . . . . . . . . . . . 15 Excavation et matériaux de carrière . . . . . . . . . . . . . . . . . . . . . . 17

2 Dualité 19

Main d"oeuvre et équipements . . . . . . . . . . . . . . . . . . . . . . . . 19 Trois techniques de production . . . . . . . . . . . . . . . . . . . . . . . . 21

Production en heures-machines . . . . . . . . . . . . . . . . . . . . . . . . 221 Programmation linéaire

Corrigé ex. 1 : Méthode du simplexe

Programme 1

8 >>>>>:Max(x1+ 2x2) x

1+ 3x221

x1+ 3x218 x 1x25 x

1etx20

On introduit des variables d"écart, ce qui conduit aux équations suivantes pour les contraintes du problème : 8>< :x

1+ 3x2+x3= 21

x1+ 3x2+x4= 18 x

1x2+x5= 5

Le premier tableau du simplexe s"écrit :

1 x

1x2x3x4x51 3 1 0 021x

3-1 3 0 1 018x

41 -1 0 0 15x

5-1 -2 0 0 00

La variable entrante estx2qui correspond à l"élément le plus négatif de la dernière ligne. La variable sortante se calcule en trouvant le plus petit rapport positif entre la colonne de droite et la colonne dex2(colonne entrante) : Min 213
;183 =183 = 6 Doncx4est la variable sortante. La ligne dex4sert de ligne pivot et on exécute une transformation du pivot autour de la valeur 3 (à l"intersection de la ligne dex4et de la colonne dex2).

On obtient le tableau suivant :

x

1x2x3x4x52 0 1 -1 03x

3-1/3 1 0 1/3 06x

22/3 0 0 1/3 111x

5-5/3 0 0 2/3 012

Maintenant c"estx1qui entre etx3qui sort car :

Min 32
;112=3 =32 Un nouveau pivot autour du nombre 2 (à l"intersection de la ligne dex3et de la colonne dex1) conduit au tableau suivant : x

1x2x3x4x51 0 1/2 -1/2 03/2x

10 1 1/6 1/6 013/2x

20 0 -1/3 2/3 110x

50 0 5/6 -1/6 029/2

Maintenant c"estx4qui entre etx5qui sort car :

Min

13=21=6;102=3

=102=3= 15 Un nouveau pivot autour du nombre 2/3 (à l"intersection de la ligne dex5et de la colonne dex4) conduit au tableau suivant : x

1x2x3x4x51 0 1/4 0 3/49x

10 1 1/4 0 -1/44x

20 0 -1/2 1 3/215x

40 0 3/4 0 1/417

2 Ce tableau correspond à l"optimum car il n"y a plus de termes négatifs dans la dernière ligne. On obtient donc comme solution :

8>>>>>><

>>>>>:x 1= 9 x 2= 4 x 3= 0 x 4= 15 x 5= 0 La première et la troisième contrainte sont saturées.

Programme 2

8 >>>>>:Min(x13x2)

3x12x27

x1+ 4x29

2x1+ 3x26

x

1etx20

On transforme le problème en une maximisation en changeant le signe de la fonc- tion objectif :

Max(x1+ 3x2)

On introduit ensuite les variables d"écart comme ceci : 8>>>< >>:3x12x2+x3= 7 x1+ 4x2+x4= 9

2x1+ 3x2+x5= 6

x

1etx20

Le tableau de départ pour la méthode du simplexe est donc : x

1x2x3x4x53 -2 1 0 07x

3-1 4 0 1 09x

4-2 3 0 0 16x

51 -3 0 0 00

quotesdbs_dbs2.pdfusesText_2