[PDF] [PDF] Fonctions de plusieurs variables Limites dans R - Institut de

va bien (un graphe est alors une courbe, objet de dimension 1, dans le plan) continuité s'étend sans problème à des fonctions de plusieurs variables conde pour voir s'il s'agit effectivement d'un extremum local et, le cas échéant, s'il s'agit d'un On obtient bien une unique solution, qui se trouve être proche de a



Previous PDF Next PDF





[PDF] Fonctions de plusieurs variables Limites dans R - Institut de

va bien (un graphe est alors une courbe, objet de dimension 1, dans le plan) continuité s'étend sans problème à des fonctions de plusieurs variables conde pour voir s'il s'agit effectivement d'un extremum local et, le cas échéant, s'il s'agit d'un On obtient bien une unique solution, qui se trouve être proche de a



[PDF] ´Eléments de calculs pour létude des fonctions de plusieurs

d'incertitude et pour trouver les extrema (maximum, minimum) d'une fonction de plusieurs 3 Tracer les courbes de niveau z = 0, z = 1 et z = 2 4 Déterminer le graphe de f, puis reconnaıtre une “figure” de géométrie clas- sique 2 On dit que f est dérivable en x et de dérivée f/(x) lorsque la limite suivante est finie



[PDF] Première S - Extremums dune fonction - Parfenoff

0 et pour < 0 ≥ 0 La fonction est dérivable sur I admet une limite ' quand tend vers 0 et les rapports étant aussi bien positifs que négatifs ' ne peut être que 0



[PDF] Exercices corrigés

Déterminer le domaine de définition des fonctions marginales de f,g,h et les calculer 3 L'équation de la tangente `a la courbe représentative de f en 1 est y = f(1) + f (1)(x − 1) Écrire le développement limité de f `a l'ordre 1 au point (2, 3) On reconnaıt l'équation du cercle de Trouver les extrema locaux de f sur R2



[PDF] Fonctions de plusieurs variables - Université de Poitiers

10 avr 2009 · Gradient et courbes de niveau 5 Extrema 5 1 Signe d'une forme quadratique en deux variables 5 2 Développement limité à l'ordre 2 et extrema locaux si, et seulement si, il se trouve au-dessus du graphe de la fonction f (2 3 6), (2 3 7 ) et (2 3 8) permettent de construire ou reconnaître Problème I



[PDF] Fonctions de plusieurs variables et applications pour lingénieur

1 Introduction à l'étude des fonctions de plusieurs variables 1 Problème courant en Optimisation : on peut être amené à chercher x pour que le On reconnaît bien sûr l'équation de la tangente à la courbe de f en a : y = f(a)+(x − exhiber deux directions particulières afin de trouver deux limites différentes selon ces di-



[PDF] L1 ECO — NOTES DU COURS DE MATHS SEM 2 - LMPT

BUT : trouver les extrema (maxima et minima) d'une fonction de plusieurs variables Néanmoins, il nous faut d'abord bien étudier les problèmes sans contraintes Alors f admet un développement limité à l'ordre 1 au voisinage de x0: Exemple : Tracer la courbe représentative de la fonction f(x) = (x − 1)3 et placer ses



[PDF] Le contrôle des inflexions et des extremums de courbure portés par

2 1 3 Le contrôle des points d'extremums de courbure portés par les courbes primitif était ainsi probablement de distinguer et de reconnaître les formes S'il est possible d'exprimer le problème seulement avec des fonctions fi(x), et d' extremums de courbure que l'on peut trouver cette fois sur une surface générique



[PDF] MAT 1739 Calcul

limite pour trouver des limites de suites et de fonctions ˆ être capable de reconnaıtre les principales discontinuités qui peuvent être égale `a la pente de la tangente `a la courbe en ce point Pourquoi a-t-on ce probl`eme? (iii) Si f ( x) ne change pas le signe en x = c, alors il n'y a pas d'extremum local en ce point

[PDF] limites de fonctions cours

[PDF] limites de fonctions exercices corrigés

[PDF] limites de fonctions formes indeterminées

[PDF] limites de fonctions rationnelles exercices

[PDF] Limites de fonctions svp

[PDF] limites de fonctions terminale s

[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'innovation

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours

[PDF] Limites de la démocratie

[PDF] limites de la discrimination positive

[PDF] Limites de la puissance francaise

Chapitre 1

Fonctions de plusieurs variables.

Limites dansRn.

Le but principal de ce cours est d"étudier les fonctions de plusieurs variables. En première

année vous avez vu les fonctions d"une seule variable, où un paramètre réel (qui physique-

ment peut représenter une température, une pression, une densité massique, volumique, etc.) dépend d"un autre paramètre, également réel (le temps, une abscisse, etc).

Ici on va donc s"intéresser à des fonctions de plusieurs paramètres réels. Par exemple on

peut vouloir étudier la température, la pression ou la densité volumique en fonction de la position dans l"espace (3 dimensions), de la position et de la vitesse (par exemple quelle est la densité de particules qui se trouve à cet endroit et qui va dans cette direction, ce qui fait 6 dimensions), on peut s"intéresser en plus à la dépendance par rapport au temps (une

dimension supplémentaire). La quantité étudiée peut dépendre de la position deNobjets,

auquel cas on doit travailler avec3Ndimensions. Bref, les exemples ne manquent pas... Notre exemple favori dans ce cours sera celui d"une altitude dépendant de deux para- mètres (latitude et longitude ou, de façon plus abstraite,xety). Il s"agit donc d"une fonction sur un domaine deR2et à valeurs dansR. L"intérêt est que le graphe de cette fonction correspond exactement à la montagne que l"on est en train d"escalader. Mathématiquement, on devra donc étudier des fonctions qui ne sont plus définies sur un intervalle (ou une partie quelconque) deR, mais sur un domaine deRnpour un certain n2N. L"espace d"arrivée pourra êtreRou bienRppour un certainp2N, si la quantité qui nous intéresse est elle-même multi-dimensionnelle. On verra que le fait d"avoir plusieurs

dimensions à l"arrivée n"est pas très génant, alors que le fait d"avoir plusieurs dimensions au

départ va poser un certain nombre de difficultés par rapport à ce que vous connaissez.

Les principales propriétés des fonctions de plusieurs variables auxquelles on va s"intéresser

sont les questions de régularité (continuité, dérivabilité, ...) et leurs conséquences (compor-

tement local d"une fonction, étude des extrema, ...), d"intégration, et enfin le lien entre les

deux.

1.1 Fonctions de plusieurs variables

On considère une partieDdeRn, ainsi qu"une fonctionfdeDdansRp. A tout point x= (x1;:::;xn)2 D 1 Fonctions de plusieurs variables. Limites dansRn.-20 -20 -20 -20 -15 -15 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10 -5 -5 -5 -5 -5 -5 -5 -5 0 0 00 0 0 000 0 00 0 0 00 5 555
5 5 5 5 10 10 10 10 15 15 20 20 -5-4-3-2-1012345 -5 -4 -3 -2 -1 0 1 2 3 4 5 Figure1.2 - Lignes de niveau pour l"application(x;y)7!x2cos(y)et carte IGN avec lignes de niveau pour l"altitude.

1.2 Normes

Notre objectif est maintenant d"étudier la régularité des fonctions de plusieurs variables.

La notion de limite, sur laquelle reposent en particulier les notions de continuité et de dériva-

bilité, s"appuie elle-même sur la notion de proximité entre deux points. Pour une fonctionf deRdansR, on dit quef(x)tend versl2Rquandxtend versa2Rsif(x)est " proche » deldès lors quexest " assez proche » dea. Intuitivement, deux réelsxetysont proches si la valeur absolue (quantité positive)jxyjest petite, en un sens à préciser. Avant de parler de limite pour des fonctions définies surRn, il faut donc donner un sens précis à l"assertion "xest proche dey» lorsquexetysont des points deRn. En fait, on sait déjà mesurer la distance entre deux points deRn. Par exemple pour deux pointsx= (x1;x2)ety= (y1;y2)dansR2, la longueur du segment[x;y]est donnée par d(x;y) =p(x1y1)2+ (x2y2)2: Cette quantité sera appelée distance euclidienne entrexety. Mais ce n"est pas toujours la bonne façon de mesurer la distance entre deux points, comme le montrent les exemples suivants. Considérons un piéton dans une ville organisée par blocs (voir figure 1.3 ), chaque

bloc faisant 500m de côté. Il devra parcourirm pour aller du pointAau pointBetm pour aller du pointAau pointC, alors que les distances euclidiennes (à vol d"oi-

seau) entreAetBet entreAetCsont respectivement dem etm. Marseille Figure1.3 - Les villes américaines et les déplacements en normel1.

est plus proche de Paris que de Toulouse si on regarde le temps de parcours par le train,Année 2013-2014 3

L2 Parcours Spécial -Calcul différentiel et intégralalors que c"est quasiment deux fois plus loin en termes de kilomètres par la route. Ainsi il y

a différentes façons de mesurer la distance entre deux points, et il n"y en a pas de bonnes ou de mauvaises : chacune est plus ou moins bien adaptée à chaque contexte. Définition 1.3.SoitEunR-espace vectoriel. On appelle norme surEune application N:E!R+qui vérifie les propriétés suivantes : (i)8x2E; N(x) = 0()x= 0(séparation), (ii)8x2E;82R; N(x) =jjN(x)(homogénéité), (iii)8(x;y)2E2; N(x+y)6N(x) +N(y)(inégalité triangulaire). Étant donnée une normeNsurE, on appelle distance associée àNl"application d

N:E2!R+

(x;y)7!N(xy) On note que toutes les distances ne sont pas obtenues de cettes façons, mais on ne s"attardera pas sur ces questions dans ce cours (voir tout de même les exercices 14 et 15 , plus de détails seront donnés dans le cours d"approfondissements mathématiques). Exercice1.Montrer que la valeur absolue est une norme surR.

Proposition 1.4.Pourx= (x1;:::;xn)2Rnon note

kxk2=v uutn X j=1jxjj2:

Alors l"applicationx7! kxk2est une norme surRn.

Démonstration.Les propriétés de séparation et d"homogénéité sont faciles et laissées en exer-

cice. Pour montrer l"inégalité triangulaire, on considère deux pointsx= (x1;:::;xn)et y= (y1;:::;yn)deRn. Six+y= 0alors le résultat est clair. Sinon on a d"après l"inégalité de Cauchy-Schwarz kx+yk2 2=nX j=1(xj+yj)2=nX j=1x j(xj+yj) +nX j=1y j(xj+yj) 6 v uutn X j=1x 2jv uutn X j=1(xj+yj)2+v uutn X j=1y 2jv uutn X j=1(xj+yj)2

6(kxk2+kyk2)kx+yk2:

On obtient l"inégalité triangulaire en divisant parkx+yk26= 0.Exercice2.Pourx= (x1;:::;xn)2Rnon note

kxk1=nX j=1jxjjetkxk1= max16j6njxjj: Montrer que les applicationsx7! kxk1etx7! kxk1sont des normes surRn.

1.3 Limites

Maintenant qu"on a introduit les normes, qui jouent dansRnle rôle que joue la valeur absolue dansR, on peut définir la convergence d"une suite exactement de la même façon dans R

nque dansR, en remplaçant simplement la valeur absolue par une norme.4 J. Royer - Université Toulouse 3

Fonctions de plusieurs variables. Limites dansRn.Définition 1.5.SoientEunR-espace vectoriel muni d"une normekk. Soient(xm)m2Nune

suite d"éléments deEetl2E. On dit que la suite(xm)m2Ntend verslet on note x m!m!+1l si

8" >0;9N2N;8m>N;kxmlk6":

Autrement ditxmtend verslsi la quantité réellekxmlktend vers 0 au sens usuel. Sans surprise, on retrouve les même propriétés de base que pour la limite d"une suite réelle : Proposition 1.6.SoientEunR-espace vectoriel muni d"une normekk. (i)Unicité de la limite.Soient(xm)m2N2EN,l12Eetl22E. Sixm!l1etxm!l2 quandmtend vers+1, alorsl1=l2. (ii)Linéarité de la limite.Soient(xm)m2Net(ym)m2Ndeux suites d"éléments deE. Soient l

1;l22E,;2R. Si

x m!m!1l1etym!m!1l2; alors x m+ym!m!1l1+l2: Exercice3.Démontrer la proposition1.6 (la démonstration est la même que p ourles limites dansR). Définition 1.7.SoitEunR-espace vectoriel. SoientN1,N2deux normes surE. On dit que N

1etN2sont équivalentes s"il existe une constanteC>0telle que pour toutx2Eon a

N

1(x)6CN2(x)etN2(x)6CN1(x):

L"intérêt de cette nouvelle définition est illustré par l"exercice 4 . La difficulté avec la définition 1.5 est qu"elle dép enda priori de la norme don tl"espace Eest muni. Ainsi, une suite peut converger vers une certaine limite pour une norme, ne pas être convergente pour une autre norme, ou encore converger vers une limite différente pour une troisième norme.

Ce n"est pas très agréable.

Lorsque deux normes sont équivalentes, il est facile de voir qu"une suite converge vers une certaine limite pour l"une des deux normes si et seulement c"est aussi le cas pour l"autre.

C"est bien mieux.

Exercice4.1.Montrer que les trois normesx7! kxk1,x7! kxk2etx7! kxk1surRnsont deux à deux équivalentes.

2.Soit(xm)m2Nune suite de points deRnetl2Rn. Montrer que

kxmlk1!m!10() kxmlk2!m!10() kxmlk1!m!10: La vraie bonne nouvelle est qu"en dimension finie toutes les normes sont équivalentes. Comme on travaillera en dimension finie dans tout ce cours, cela signifie qu"on pourra parler de limite sans préciser la norme avec laquelle on travaille. Dans la suite, lorsqu"on parlera d"une norme surRn, on ne précisera donc la norme utilisée que quand ce sera nécessaire. Sinon cela signifiera que le résultat énoncé ne dépend pas du choix de la norme.

Attention tout de même à bien garder en tête cette subtilité, car tous les espaces ne sont

pas de dimension finie, loin de là... Proposition 1.8.SoitEunR-espace vectoriel de dimension finie. Alors toutes les normes surEsont équivalentes.Année 2013-2014 5

L2 Parcours Spécial -Calcul différentiel et intégralDémonstration.La démonstration de ce résultat sera admise pour ce cours. Elle sera donnée

dans le cours d"approfondissements mathématiques.On munit maintenantRnd"une norme quelconque, notéekk.

Définition 1.9.On dit que la suite(xm)m2Nd"éléments deRnest de Cauchy si

8" >0;9N2N;8j;k>N;kxjxkk6":

Proposition 1.10.Rnest complet. Cela signifie que toute suite de Cauchy dansRnest convergente. Démonstration.Voir le cours d"approfondissements mathématiques.1.4 Ouverts et fermés.

SoientEunR-espace vectoriel etkkune norme surE.

Définition 1.11.Pourx2Eetr >0on note

B(x;r) =fy2Ej kxyk< rg

la boule ouverte de centrexet de rayonr,B(x;r) =fy2Ej kxyk6rg la boule fermée de centrexet de rayonr, et enfin

S(x;r) =fy2Ej kxyk=rg

la sphère de centrexet de rayonr.

Définition 1.12.Soit

une partie deE. On dit que est ouvert si pour toutx2 il exister >0tel queB(x;r) . On dit que est fermé si son complémentaireEn est ouvert.

Exemple1.13.DansE=R, muni de la valeur absolue :

Un intervalle de la forme]a;b[aveca < best ouvert, un intervalle de la forme[a;b]aveca6best fermé, un intervalle de la forme[a;b[ou]a;b]aveca < bn"est ni ouvert ni fermé, Ret l"ensemble vide;sont à la fois ouverts et fermés. Exemple1.14.Une boule ouverte est un ensemble ouvert deE, une boule fermée ou une sphère sont des ensembles fermés deE. Démonstration.On montre la première assertion de l"exemple1.14 .Soit x2Eetr >0. On considèrey2B(x;r)et on note=r kyxk>0. Alors on aB(y;)B(x;r). En effet pour toutz2B(y;)on a par l"inégalité triangulaire kzxk6k(zy) + (yx)k6kzyk+kyxk< + (r) =r:quotesdbs_dbs47.pdfusesText_47