[PDF] [PDF] Les fonctions sinus et cosinus - Lycée dAdultes

26 jui 2013 · 1 3 Signe des lignes trigonométriques 3 2 Application aux calculs de limites La fonction cosinus est paire : ∀x ∈ R cos(−x) = cos x



Previous PDF Next PDF





[PDF] Limites et continuité de fonctions

Limite en l'infini, limite en un réel 4 Fonctions trigonométriques réciproques Propriétés dans l'ensemble des réels e) De la borne sup/inf vers la limite



[PDF] Limites remarquable

Limites remarquable Fonctions trigonométrique lim x→0 sin(x) x = 1 lim x→0 1 − cos(x) x2 = 1 2 lim x→0 arcsin(x) x = 1 lim x→0 tan(x) x = 1 Fonctions 



[PDF] LIMITES DE FONCTIONS - Pierre Lux

Limites de fonctions - 1 / 1 - LIMITES Soit f, g et h trois fonctions définies sur un intervalle ] b ; + ∞ [ et L ∈ IR Si pour tout x B ) COMPARAISON A L'INFINI



[PDF] Limite dune fonction - AccesMad

4 Fonctions trigonométriques lim x→x0 sin x=sin x0 lim x→x0 cos x=cos x0 Remarque Les fonctions sinus et cosinus n'ont pas de limite à l'infini



[PDF] Les fonctions sinus et cosinus - Lycée dAdultes

26 jui 2013 · 1 3 Signe des lignes trigonométriques 3 2 Application aux calculs de limites La fonction cosinus est paire : ∀x ∈ R cos(−x) = cos x



[PDF] Chapter 1 Limites et Equivalents - PédagoTech de Toulouse INP

Savoir qu'une fonction f (x) tend vers ±∞ ou vers 0 lorsque x est voisin de x0 ne Ainsi h(x) tend plus vite vers l'infini que f (x) qui elle même tend plus vite vers



[PDF] COURS DE MATH´EMATIQUES Modules M 1201 & M 1302

Fonctions réciproques des fonctions trigonométriques A l'infini, la limite d'une fonction polynôme est la limite de son terme de plus haut degré • A l'infini, la 



[PDF] L1 - MATH1A - FORMULAIRE

3 6 Fonctions trigonométriques Si I = ]a, +∞[ et si f et h ont la même limite l ( finie ou infinie) quand x tend vers +∞, Opérations sur les limites de fonctions

[PDF] limites des fonctions trigonométriques pdf

[PDF] Limites des suites

[PDF] Limites en plus l'infini de fonction exponentielle

[PDF] limites et asymptotes cours

[PDF] limites et asymptotes cours pdf

[PDF] limites et asymptotes exercices corrigés

[PDF] limites et continuité

[PDF] limites et continuité cours bac

[PDF] limites et continuité cours bac pdf

[PDF] limites et continuité cours pdf

[PDF] limites et continuité cours terminale s pdf

[PDF] limites et continuité exercices corrigés

[PDF] limites et continuité exercices corrigés bac

[PDF] limites et continuité exercices corrigés bac maths

[PDF] limites et continuité exercices corrigés bac pdf

DERNIÈRE IMPRESSION LE26 juin 2013 à 15:06

Les fonctions sinus et cosinus

Table des matières

1 Rappels2

1.1 Mesure principale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Résolution d"équations. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Signe des lignes trigonométriques. . . . . . . . . . . . . . . . . . . 3

2 Fonctions sinus et cosinus3

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Parité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Périodicité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 De sinus à cosinus. . . . . . . . . . . . . . . . . . . . . . . . 4

3 Étude des fonctions sinus et cosinus4

3.1 Dérivées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Application aux calculs de limites. . . . . . . . . . . . . . . . . . . . 5

3.3 Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4 Courbes représentatives. . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5 Compléments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Application aux ondes progressives6

4.1 Onde sonore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Harmoniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

PAULMILAN1 TERMINALES

1 RAPPELS

1 Rappels

1.1 Mesure principale

Définition 1 :On appelle mesure principale d"un angleα, la mesurexqui se trouve dans l"intervalle]-π;π] Exemple :Trouver la mesure principale des angles dont les mesures sont :

17π

4et-31π6

kde tours (2π) pour obtenir la mesure principale :

17π

4-k2π=π(17-8k)4=π4aveck=2

•-31π6est une mesure trop petite(?-π), il faut donc lui rajouter un certain nombrekde tours (2π) pour obtenir la mesure princimale :

31π

6+k2π=π(-31+12k)6=5π6aveck=3

1.2 Résolution d"équations

Théorème 1 :Équations trigonométriques •L"équation cosx=cosaadmet les solutions suivantes surR: x=a+k2πoux=-a+k2πaveck?Z •L"équation sinx=sinaadmet les solutions suivantes surR: x=a+k2πoux=π-a+k2πaveck?Z Exemple :Résoudre dansRles équations suivantes : a)⎷

2cosx-1=0 b) 2sinx-⎷3=0

On obtient les solutions :x=π

4+k2πoux=-π4+k2πaveck?Z

b) 2sinx-⎷

3=0?sinx=⎷3

2?sinx=sinπ3

On obtient les solutions :

x=π

PAULMILAN2 TERMINALES

1.3 SIGNE DES LIGNES TRIGONOMÉTRIQUES

1.3 Signe des lignes trigonométriques

Théorème 2 :On a sur]-π;π],

sinx>0?x?]0 ;π[ cosx>0?x??

2;π2?

O0π

2 2π sinx>0 cosx>0

2 Fonctions sinus et cosinus

2.1 Définition

Définition 2 :À tout réelx, on as-

socie un point unique M du cercle unité ou cercle trigonométrique de centre O, dont les coordonnées sont :

M(cosx; sinx)

sinx cosx xM O Définition 3 :On appelle fonctions sinus et cosinus les fonctions respectives : x?→sinxetx?→cosx

Remarque :?x?R-1?sinx?1 et-1?cosx?1

2.2 Propriétés

2.2.1 Parité

Théorème 3 :D"après les formules de trigonométrie, •La fonction sinus est impaire :?x?Rsin(-x) =-sinx •La fonction cosinus est paire :?x?Rcos(-x) =cosx ConséquenceLa courbe représentative de la fonction sinus est symétrique par rapport à l"origine, et la courbe représentative de la fonction cosinus est symé- trique par rapport à l"axe des ordonnées.

PAULMILAN3 TERMINALES

3 ÉTUDE DES FONCTIONS SINUS ET COSINUS

2.2.2 Périodicité

Théorème 4 :D"après la définition des lignes trigonométriques dans le cercle, les fonctions sinus et cosinus sont 2πpériodiques :T=2π ?x?Rsin(x+2π) =sinxet cos(x+2π) =cosx ConséquenceOn étudiera les fonctions sinus et cosinus sur un intervalle de 2π, par exemple]-π;π].

2.2.3 De sinus à cosinus

Théorème 5 :D"après les formules de trigonométrie, on a : sin 2-x? =cosxet cos?π2-x? =sinx Exemple :Résoudre dans l"intervalle]-π;π], l"équation suivante : sin x+π 4? =cosx On transforme par exemple le cosinus en sinus, l"équation devientalors : sin? x+π 4? =sin?π2-x? DansR, on trouve les solutions suivantes :?????x+π

4=π2-x+k2π

x+π

4=π-?π2-x?

+k2π??????2x=π

4+k2π

0x=π-π

2-π4+k2π

La deuxième série de solutions étant impossible, on trouve alors dansR x=π

8+kπ

Dans l"intervalle]-π;π], on prendk=-1 etk=0 , soit les solutions x=-7π

8oux=π8

3 Étude des fonctions sinus et cosinus

3.1 Dérivées

Théorème 6 :Les fonctions sinus et cosinus sont dérivables surR: sin ?x=cosxet cos?x=-sinx

Remarque :On admettra ces résultats.

PAULMILAN4 TERMINALES

3.2 APPLICATION AUX CALCULS DE LIMITES

Exemple :Déterminer la dérivée de la fonction suivante : f(x) =cos2x+cos2x La fonctionfest dérivable surRcar composée et produit de fonctions dérivables surR f ?(x) =-2sin2x-2sinxcosx =-2sin2x-sin2x =-3sin2x

3.2 Application aux calculs de limites

Théorème 7 :D"après les fonctions dérivées des fonctions sinus et cosinus, on a : limx→0sinx x=1 et limx→0cosx-1x=0 ROCDémonstration :On revient à la définition du nombre dérivée en 0. sin ?0=limx→0sinh-sin0 h=limh→0sinhh or on sait que : sin ?0=cos0=1 donc limh→0sinh h=1 de même, on a : cos ?0=limh→0cosh-cos0 h=limh→0cosh-1h or on sait que : cos ?0=-sin0=0 donc limh→0cosh-1 h=0

3.3 Variation

Comme les fonctions sinus et cosinus sont 2πpériodiques, on étudie les varia- tions sur l"intervalle]-π;π]. D"après le signe des fonctions sinus et cosinus, on obtient les tabeaux de variation suivants : x sin ?x= cosx sinx -π-π2π2π 0+0- 00 -1-1 11 00 x cos ?x= -sinx cosx-π0π 0- -1-1 11 -1-1

PAULMILAN5 TERMINALES

4 APPLICATION AUX ONDES PROGRESSIVES

3.4 Courbes représentatives

•Les courbes représentatives des fonctions sinus et cosinus sont des sinusoïdes.

•De la relation cosx=sin?

x+π2? , on déduit la sinusoïde de cosinus par une translation de vecteur ?u=-π

2?ıde la sinusoïde de sinus.

1 -1π

Période 2π

?u

Osinxcosx

3.5 Compléments

Théorème 8 :aetbsont deux réels.

Les fonctionsfetgdéfinies surRparf(x) =sin(ax+b)etg(x) =cos(ax+b) sont dérivables surRet f ?(x) =acos(ax+b)etg?(x) =-asin(ax+b) Remarque :Les fonctionsfestgsont2πapériodiques : en effet sin a? x+2π a? +b? =sin(ax+b+2π) =sin(ax+b)

4 Application aux ondes progressives

4.1 Onde sonore

Un son pur est une onde sinusoïdale caractérisée par : •Sa fréquence F (en Hertz, nombre de pulsations par seconde) qui détermine la hauteur du son. •Son amplitude (pression acoustique) P (en Pascal). La fréquence F est relié à la période T de la sinusoïde par la relation : F=1 TLa fonctionfassociée est donc de la forme :f(t) =Psin(2πFt) La note de référence (donnée par un diapason) sur laquelle s"accordent les ins- truments de l"orchestre est le la

3qui vibre à 440 Hz. Pour une amplitude de 1 Pa,

cette note peut être associé à la fonctionfdéfinie par :f(t) =sin(880πt).

L"écran d"un oscilloscope donne alors :

PAULMILAN6 TERMINALES

4.2 HARMONIQUES

0.51.01.5

-0.5 -1.0 période T=1FVariation de pression(Pa) O

0.001 0.002 0.003 0.004-0.004-0.003-0.002-0.001

4.2 Harmoniques

Une bonne technique pour analyser les ondes a été conçu en 1807 parle physi- cien françaisJean-Baptiste Fourier. Il a établi que toute onde rencontrée dans la peut être considérée comme résultant de la superposition d"ondes sinusoïdales. Cela peut se réaliser, dans le cas du son, par un analyseur de spectre et, dans le cas de la lumière, par un prisme. Selon Fourier, toute fonction périodique de fréquence F peut être considérée comme une somme de termes sinusoïdaux avec des amplitudes et des phases appropriées. Le premier d"entre eux a la même fréquence (F

1=F). C"est lefon-

damentalou le premier harmonique. Le terme suivant, de fréquence F2=2F est appelé deuxième harmonique puis vient le troisième terme de fréquence F3=3F, appelé troisième harmonique et ainsi de suite. Notons que, pendantle tempsquotesdbs_dbs47.pdfusesText_47