[PDF] [PDF] COURS TERMINALE S LES SUITES NUMERIQUES - Dominique Frin

COURS TERMINALE S LES SUITES NUMERIQUES A Notation - Définition Définition : une suite numérique (un) est une application de dans On note (un) la 



Previous PDF Next PDF





[PDF] COURS TERMINALE S LES SUITES NUMERIQUES - Dominique Frin

COURS TERMINALE S LES SUITES NUMERIQUES A Notation - Définition Définition : une suite numérique (un) est une application de dans On note (un) la 



[PDF] FICHE DE RÉVISION DU BAC - Studyrama

opérations sur les limites, comparaisons, raisonnement par récurrence : S Prérequis Fonctions – notion de limite – calcul de puissances Plan du cours 1 6 Limites de suites 1 Etude de suites Définition : Une suite numérique est une 



[PDF] Résumé du cours sur les suites

Résumé du cours sur les suites 1 Suites 1 1 Les deux façons de définir une suite numérique réelle Soit n un entier naturel , q un nombre réel et S =1+ q +



[PDF] Terminale S - Suites numériques - Exercices - Physique et Maths

Exercice 1 1 La suite (un) est définie pour tout entier naturel n par un = n2 – 3n + 2 est-elle arithmétique ? 2 (vn) est une suite géométrique de premier terme v0  



[PDF] Extrait de cours - Mathématiques Terminale S - Cours Legendre à

Remarque : n – p + 1 représente le nombre de termes de cette somme II – Suites géométriques 1 Définition Une suite u est une suite géométrique s'il existe un 



[PDF] Terminale ES – Chapitre III – Suites numériques - tableau-noirnet

Si u0 est défini, on a u0=b+a×0=b Exemple : la suite définie pour tout n ∈ par vn=46n est arithmétique de terme initial v0=4 et de raison 6



[PDF] Cours I : SUITES NUMERIQUES I Quelques rappels

Définition : Une suite un est dite explicite s'il est possible de calculer directement un à partir de n On note alors un = g n avec g une fonction définie sur ℕ 



[PDF] Cours 5: Une introduction aux suites numériques - Institut de

La suite sera notée u ou bien (un)n∈N un s'appelle le terme général de la suite Clément Rau Cours 5: Une introduction aux suites numériques 



[PDF] Limites de suites, cours, terminale S - Mathsfg - Free

3 nov 2018 · Limites de suites, cours, terminale S 1 Convergence de suites Définition : Soit ( un) une suite On dit que (un) converge vers un réel l ou a pour 



[PDF] Chapitre 2 Rappels sur les suites arithmétiques et - Maths-francefr

Le chapitre 9 du cours de terminale S est consacré à l'étude des nombres complexes La valeur de cette constante est alors la raison de la suite arithmétique 

[PDF] cours suites terminale es

[PDF] cours sur l'afrique face ? la mondialisation

[PDF] cours sur l'économie sociale et solidaire

[PDF] cours sur l'environnement ppt

[PDF] cours sur l'introduction aux politiques publiques pdf

[PDF] cours sur l'onu pdf

[PDF] cours sur la bonne gouvernance

[PDF] cours sur la cedeao pdf

[PDF] cours sur la démocratie pdf

[PDF] cours sur la formation en grh+pdf

[PDF] cours sur la paie en comptabilité

[PDF] cours sur la ponctuation

[PDF] cours sur la zone de chalandise

[PDF] cours sur le benzène

[PDF] cours sur le carrelage

COURS TERMINALE S LES SUITES NUMERIQUES

A. Notation - Définition

Définition : une suite numérique (un) est une application de ? dans ? .

On note (un) la suite de nombres u0, u1, u2,..., un, ... Le nombre un est le terme d'indice n (ou de rang n). uo est le

premier terme de la suite.

Exemples : un = 3n ( formule explicite en fonction de n ) , un = (1 + 5/100)n , un+1 = 3un + 2 et uo donné ( formule

récurrente : un terme de la suite s'écrit en fonction du ou des précédents ), un+2 = un + 1 + un et uo donné ...

B. Les suites arithmétiques

La suite (un) est une suite arithmétique s'il existe un nombre réel r tel que pour tout naturel n , un+1 = un + r.

Le réel r est appelé la raison

de la suite.

Propriétés : Pour tout entier naturel n , un = u0 + nr . Pour tous entiers naturels n et p , un = up + ( n - p ) r .

Somme de n termes consécutifs d'une suite arithmétique : S = n ? (demie somme des termes extrêmes) .

Exemples : u0 + u1 +...+ un = ?

k?0k?n u k = (n+1)u0?un

2 ; 1 + 2 + 3 + ... + n = n?n?1?

2 .

C. Les suites géométriques

La suite (un) est une suite géométrique s'il existe un nombre réel q tel que pour tout naturel n , un+1 = qun .

Le réel q est appelé la raison

de la suite.

Propriétés : Pour tout entier naturel n , un = u0 ? qn . Pour tous entiers naturels n et p , un = up ? q(n - p) .

Somme de n termes consécutifs d'une suite géométrique : S = premier terme ?

1?qn?1

1?q si q ? 1 ,

et S = n ? premier terme si q = 1.

Exemple : u0 + u1 +...+ un =?

k?0k?n u k= u0 1?qn?1 1?q.

D. Sens de variation d'une suite

Définition : Soit (un) une suite de nombre réels. La suite (un) est croissante si, pour tout entier naturel n, un+1 ? un .

La suite (un) est strictement croissante si, pour tout entier naturel n, un+1 > un . La suite (un) est décroissante si, pour tout entier naturel n, un+1 ? un . La suite (un) est strictement décroissante si, pour tout entier naturel n, un+1 < un .

Technique : a) on peut chercher à comparer un+1 - un à 0, ou si tous les termes de la suite sont strictement positifs,

comparer un?1 un à 1. Si pour tout entier naturel n, un+1 - un ? 0, alors un+1 ? un et la suite (un) est croissante.

Si pour tout entier naturel n, un+1 - un ? 0, alors un+1 ? un et la suite (un) est décroissante.

b) Si un = f(n) , alors les variations de f sur [0 ; +? [ donne les variations de (un).

Exemple : sens de variation d'une suite arithmétique : f(n) = u0 + nr , f est une fonction affine;

si r > 0, (un) est strictement croissante ; si r < 0, (un) est strictement décroissante ; si r = 0, (un) est constante.

E. Suites majorées, minorées, bornées

Définition : Soit (un) une suite de nombre réels. La suite (un) est majorée s'il existe un nombre réel M tel que,

pour tout entier naturel n, un ? M.

La suite (un) est minorée s'il existe un nombre réel m tel que, pour tout entier naturel n, un ? m.

La suite (un) est bornée si elle est à la fois majorée et minorée.

Technique : pour montrer qu'une suite est majorée ( ou minorée ), et si un = f(n) , alors on cherche à majorer ( ou à

minorer ) f(x) sur [0 ; +? [ .

Exemple: un = n

n?1. Cette suite est majorée par 1 et minorée par 0. Elle est donc bornée par 0 et 1.

F. Limite d'une suite

1. Définition : Une suite (un) est une suite convergente vers le nombre réel l si tout intervalle ouvert contenant l

contient tous les termes de la suite à partir d'un certain rang. Le nombre réel l est la limite de la suite (un), on écrit

lim n???un= l . Une suite est divergente si elle n'est pas convergente ( sa limite est infinie ou n'existe pas ).

2. Technique : si un = f(n) , alors la limite de la fonction f en +?? est la limite de la suite (un).

3. Théorèmes ( de comparaison ) : Si, à partir d'un certain rang, un ? vn et si lim

n???un= +? , alors lim n???vn= +? .

Si, à partir d'un certain rang,

?un?l?? vn et si lim n???vn= 0, alors lim n???un= l . Si, à partir d'un certain rang, un ? vn et si les deux suites convergent, alors lim n???un??lim n???vn.

Théorème des gendarmes:

Si, à partir d'un certain rang, un? vn? wn et si lim n???un=lim n???wn= l , alors lim n???vn= l .

Démonstration du théorème des gendarmes: La suite (un) converge vers l, donc tout intervalle ouvert contenant l

contient tous les termes de la suite (un) à partir d'un certain rang n1 . De même, la suite (wn) converge vers l, donc

tout intervalle ouvert contenant l contient tous les termes de la suite (wn) à partir d'un certain rang n2 . En prenant

n

0 = max(n1, n2), tout intervalle ouvert contenant l contient tous les termes de la suite (vn) à partir du rang n0

puisque un ? vn ? wn . Donc la suite (vn) converge vers l.

4. Exemples:

? Soit la suite (un) définie par un = n n?1. On a un = f(n) avec f(x) = x x?1. Comme lim x???f?x? = 1, alors lim n???un = 1 et cette suite converge vers 1.

? Soit la suite (un) définie par un = 2n . Pour tout entier naturel n, un > 0 et un + 1 > un , donc la suite est

strictement croissante, minorée par 1 et non majorée. lim n???un = +?, donc la suite est divergente. ? Soit la suite (un) définie par un =

2n???1?n

n?1. On considère alors les suites (vn) et (wn) définies par v n = 2n?1 n?1 et wn = 2n?1 n?1. Alors, pour tout entier naturel n, vn ? un ? wn . De plus, lim n???un= lim n???2n?1n?1= 2 et lim n???wn= lim n???2n?1n?1 = 2, donc par le théorème des gendarmes, lim n???un= 2.

5. Suites monotones convergentes:

Théorème

: Toute suite croissante et majorée converge. Toute suite décroissante et minorée converge.

Remarque: si la suite (un) est croissante et majorée par un réel M, alors la limite de (un) est inférieure ou égale à

M; cette limite n'es pas nécessairement M.

Exemple: La suite (un) définie par un + 1 =

?un?1 et u0 = 0 est croissante et majorée par 2; elle converge donc mais sa limite n'est pas 2 mais le nombre d'or 1??5

2. (A démontrer !)

Propriétés: Si (un) converge vers l, et si (un) est croissante, alors pour tout n de ? , un ? l.

Si (un) converge vers l, et si (un) est décroissante, alors pour tout n de ? , un ? l.

G. Représentation graphique d'une suite

Si la suite (un) a son terme général défini en fonction de n, on représente la suite dans un repère du plan, par un ensemble de points de coordonnées (n; un). Cette représentation graphique permet de visualiser les variations de la suite et éventuellement la convergence.

Exemple: un = n

n?1. Les sept premiers termes de la suite sont représentés ci-contre. On peut conjecturer que la suite est strictement croissante et qu'elle converge vers 1. Si la suite (un) est définie par récurrence, de la forme u n+1 = g(un), on représente la suite dans un repère du plan, en utilisant la représentation graphique de la fonction g et la droite d'équation y = x : On place u0 sur l'axe des abscisses, puis u1 comme image de u0 par la fonction g, puis on ramène u1 sur l'axe des abscisses en utilisant la droite d'équation y = x , puis u2 comme image de u1 par la fonction g, puis on ramène u2 sur l'axe des abscisses en utilisant la droite d'équation y = x , etc...

Exemple: un+1 = - 0,8un + 4 et u0 = 1.

Les sept premiers termes de la suite sont représentés ci-contre. On peut conjecturer que la suite n'est ni croissante, ni décroissante et qu'elle converge vers l, où l est solution de l'équation - 0,8x + 4 = x, soit l = 20/9.

H. Suites adjacentes

Définition: On dit que deux suites (un) et (vn) définies sur ??sont adjacentes si et seulement si les trois conditions

suivantes sont réalisées: ?(un) est croissante et (vn) est décroissante; ?Pour tout entier naturel n, un ? vn ; lim n????un?vn?= 0.

Exemple: un = 1 - 1

n?1 et vn = 1 + 1 n?1 sont des suites adjacentes.

Théorème: Si les deux suites (un) et (vn) sont adjacentes, alors elles convergent vers la même limite.

Démonstration: la suite (un) est croissante, donc pour tout entier naturel n, u0 ? un ? vn ; de même la suite (vn) est

décroissante, donc pour tout entier naturel n, un ? vn ? v0 . Donc la suite (un) est croissante et majorée par v0 ,

donc elle converge vers un réel l. La suite (vn) est décroissante et minorée par u0 , donc elle converge vers un réel

l'. La suite ( un ? vn ) converge donc vers l - l' . Or lim n????un?vn?= 0, donc l - l' = 0, et l = l'. De plus, pour tout entier naturel n, un ? l ? vn . Les deux suites de l'exemple précédent converge vers 1.quotesdbs_dbs50.pdfusesText_50