[PDF] [PDF] E Les graphes probabilistes - Lycée dAdultes

2 État probabiliste et matrice de transition Définition 2 Soit une expérience aléatoire à deux issues possibles A et B A chacune de ces issues est affectée une 



Previous PDF Next PDF





[PDF] E Les graphes probabilistes - Lycée dAdultes

2 État probabiliste et matrice de transition Définition 2 Soit une expérience aléatoire à deux issues possibles A et B A chacune de ces issues est affectée une 



[PDF] Terminale S – enseignement de spécialité - AC Nancy Metz

Terminale S – Enseignement de Puis on effectue le produit de la matrice des notes (jaune) par Soit M la matrice de transition du graphe probabiliste



[PDF] SUITES DE MATRICES ET MARCHES ALEATOIRES - maths et tiques

Dans l'exemple, la matrice de transition est : Page 6 Yvan Monka – Académie de Strasbourg – www maths-et-tiques 6 On trouve par exemple à l'intersection 



[PDF] Douine – Terminale S – Activités – Chapitre 5 spé – Matrices

Déterminer ensuite la matrice de transition T associée au graphe probabiliste Puissance quatrième et interprétation Calculer T4 On suppose qu'au départ la 



[PDF] S Amérique du Sud novembre 2017 - Meilleur En Maths

Recopier et compléter le graphe probabiliste ci-dessous représentant la situation 2 b On admet que la matrice de transition est : T=(3 5 3 20



[PDF] Mise en page 1 - APMEP

Terminale S(1), sous le titre « Matrices et suites » : Il s'agit Mais pour des élèves de terminale, il est clair qu'il faut sommets : matrice de transition, état



[PDF] Marches aléatoires - MathXY

Classe de Terminale S Matrices et suites http://www mathxy fr/ Propriété 2 Dans la matrice de transition : Tous les coefficients sont compris entre 0 et 1



[PDF] Spcialit mathmatiques en terminale S - Ministère de lÉducation

Les matrices de transition ne sont pas systématiquement symétriques La matrice M ci-dessous représente la marche dans le réseau (A, P, B) A P B 0 0 A 1 1



[PDF] Sujet du bac 2018 en mathématiques, Polynésie - Freemathsfr

20 jui 2018 · A est appelée matrice de transition dans le milieu 1 On admet alors que, pour tout entier naturel n, Xn = X0 An 3 On définit la matrice P par P =

[PDF] matrice des coefficients techniques

[PDF] matrice diagonalisable exemple

[PDF] Matrice et variable aléatoire

[PDF] matrice identité d'ordre 3

[PDF] matrice inverse de leontief definition

[PDF] matrice inversible exercice corrigé

[PDF] matrice nilpotente exercice corrigé

[PDF] Matrice probabiliste, terminale

[PDF] matrice spe maths es

[PDF] Matrice spécialité maths (ES)

[PDF] matrice terminale es exercice

[PDF] matrice trigonalisable exercice corrigé

[PDF] matrice xcas

[PDF] matrice+exercice+correction

[PDF] matrices diagonales commutent

2012-2013

Spécialité Mathématiques

Term ES

E. Les graphes probabilistes

1 PrésentationDéfinition 1Un grapheprobabilisteest un grapheorientéetpondérédans lequel :

•il y a au plus un arc d"un sommet à l"autre; •la somme des poids des arcs issus d"un même sommet est égale à 1.

REMARQUES :

1. Le sp oidsdes arcs son talors des probabilités (nom bresréels compris en tre0 et 1). 2.

Un gra pheprobabiliste indique les différen tsétats p ossiblesd"un système (sommets du graphe) et

les probabilités de passage d"un état à l"autre (poids des arcs).

Exemple 1

•Le graphe n°1 est un graphe probabiliste d"ordre 2. •Le graphe n°2 est un graphe probabiliste d"ordre 3.

•Le graphe n°3 n"est pas un graphe probabiliste car la somme des poids des arcs issus du sommet C

est égale à 0,9 et non à 1.2 État probabiliste et matrice de transition

Définition 2

Soit une expérience aléatoire à deux issues possibles A et B. A chacune de ces issues est affectée une probabilité,pAetpB.

Lorsque l"on répète cette expérience, dans les mêmes conditions, on se retrouve après chaque réali-

sation dans un état donné. Cet état à l"issue de chacune des réalisations de l"expérience est appelé

état probabiliste.

Il peut être représenté par une matrice lignePn=?a nbn?qui traduit la probabilité d"obtenir l"issue A ou l"issue B aprèsnréalisation de l"expérience aléatoire.

On aan+bn= 1, pour tout entier natureln.Page 1/4

2012-2013

Spécialité Mathématiques

Term ES

REMARQUE :

On généralise sans difficulté cette définition à une expérience aléatoire ayant un nombrenfini d"issues

possibles (n≥2).Définition 3 Soit G un graphe probabiliste d"ordrendont les sommets sont numérotés de 1 àn. Lamatrice de transitionM de G est la matrice carrée d"ordrentelle quemijest égal à la probabilité portée par l"arc reliant le sommetiau sommetjs"il existe et 0 sinon.

REMARQUE :

La matrice de transition M permet d"étudier l"évolution du système que schématise le graphe probabi-

liste.

Exemples 1

•La matrice de transitionM1associée au graphe ci-contre est (en supposant les sommets rangés dans l"ordre alphabétique) :M1=?0,55 0,45

0,8 0,2?

•La matrice de transistionM2associées au graphe ci-contre est (en supposant les sommets rangés dans l"ordre alphabétique) : M 2=( (0,75 0,1 0,15

0,4 0,4 0,2

0,6 0,1 0,3)

)Propriété 1 SoitMla matrice de transition d"un graphe probabiliste associé à un système donné. SoitP0la matrice-ligne décrivant l"état initial du système étudié.

SoitPnla matrice-ligne décrivant l"état probabiliste à l"étapendu système étudié.

On a les relations :

P n+1=Pn×M Pn=P0×Mn

Démonstration(pour un graphe d"ordre 2) :

Soit un graphe probabiliste d"ordre 2 de matrice de transitionM=?α1-α

β1-β?

traduisant un système à deux étatsAetB, et soitnun entier naturel. •SoitAnl"évènement : "on obtientAà l"étapen". •SoitBnl"évènement : "on obtientBà l"étapen". •SoitPn=?a nbn?la matrice-ligne décrivant l"état probabiliste à l"étapen. •SoitPn+1=?a n+1bn+1?la matrice-ligne décrivant l"état probabiliste à l"étapen+ 1.Page 2/4

2012-2013

Spécialité Mathématiques

Term ES

On considère l"arbre pondéré suivant :On a les relations (formule des probabilités totales) :

a n+1=P(An+1) =PAn(An+1)×P(An) +PBn(An+1)×P(Bn) =αan+βbn b n+1=P(Bn+1) =PAn(Bn+1)×P(An) +PBn(Bn+ 1)×P(Bn) = (1-α)an+ (1-β)bn Cela se traduit en écriture matricielle par :Pn+1=Pn×M.

On a alors :P1=P0×M

P

2=P1×M=P0×M×M=P0×M2

P

3=P2×M=P0×M2×M=P0×M3

P n=Pn-1×M=P0×Mn-1×M=P0×Mn

REMARQUE :

La matriceMnpermet de trouver l"état probabiliste à l"étapen.

Exemple(d"après Bac ES La Réunion 2008)

Les joueurs d"un club de football sont partagés en deux équipes : une équipeAet une équipeB.

L"entraîneur change la composition de ces équipes après chacun des matchs, suivant les performances

des joueurs. Une étude statistique menée au cours des saisons précédentes permet d"estimer que :

•si un joueur fait partie de l"équipeA, la probabilité qu"il reste dans cette équipe pour le match suivant

est 0,6;

•si un joueur fait partie de l"équipeB, la probabilité qu"il change d"équipe le match suivant est 0,2.

La situation précédente peut être schématisée par le graphe probabiliste ci-dessous et sa matrice de

transition.M=?0,6 0,4

0,2 0,8?Page 3/4

2012-2013

Spécialité Mathématiques

Term ES

Pour une entier naturelndonné, on notePn=?a

nbn?la matrice-ligne décrivant l"état probabiliste lors du matchn. Enzo vient d"arriver dans le club et la probabilitéa0qu"il joue dans l"équipeApour le match de préparation (match 0) est 0,1. •L"état probabiliste initial est doncP0=?0,1 0,9?. •On a donc, par exemple,P1=P0×M=?0,24 0,76?. La probabilitéa1qu"Enzo joue dans l"équipeApour le match 1 est 0,24. •On a aussi, par exemple,P2=P0×M2=?0,296 0,704? La probabilitéa2qu"Enzo joue dans l"équipeApour le match 2 est 0,296.

3 État stableDéfinition 4

Soit un graphe probabiliste d"ordrenassocié à une expérience donnée.

On appelleétat stableun état probabiliste qui n"évolue pas lors de la répétition de l"expérience.

Exemple

Soit l"état initialP0=?0,4 0,6?et la matrice de transitionM=?0,7 0,3

0,2 0,8?

On vérifie aisément queP1=P0et, de proche en proche que,Pn=P0pour tout entier natureln. L"état décrit par la matriceP0est donc un état stable.Propriété 2(admise)

Soit un graphe probabiliste d"ordre 2 dont la matrice ne comporte pas de 0. L"état probabilistePnà

l"étapenconverge vers un étatPindépendant de l"état initialP0. L"étatPest appeléétat stable du système: il vérifie l"égalitéPM=P.Page 4/4quotesdbs_dbs47.pdfusesText_47