[PDF] [PDF] PRODUIT SCALAIRE - maths et tiques

Définition : Soit un vecteur u et deux Attention : Le produit scalaire de deux vecteurs est un nombre réel Ecrire par sont orthogonaux si et seulement si u



Previous PDF Next PDF





[PDF] Produit scalaire - Maths-francefr

→v = 0 est équivalente au fait que les vecteurs →u et →v sont orthogonaux 4) Propriétés 1) Montrer que les droites 3 et 3′ sont orthogonales 2) Les droites  



[PDF] PRODUIT SCALAIRE DANS LESPACE - maths et tiques

est orthogonale à ( ) Méthode : Déterminer si un vecteur est normal à un plan Vidéo https://youtu be/aAnz_cP72Q4 ABCDEFGH est un cube Démontrer que le  



[PDF] PRODUIT SCALAIRE - maths et tiques

Définition : Soit un vecteur u et deux Attention : Le produit scalaire de deux vecteurs est un nombre réel Ecrire par sont orthogonaux si et seulement si u



[PDF] Vecteurs orthogonaux

Deux vecteurs AB et CD sont dits orthogonaux si et seulement si l'un des deux est nul ou si (AB) -L (CD) -+ -+ AB l CD Notation: Selon la définition des 



[PDF] Le produit scalaire - Labomath

Le vecteur nul est donc orthogonal à tout vecteur Application Dire que deux droites (AB) et (CD) sont perpendiculaires équivaut à dire que AB⋅ CD= 



[PDF] 1) Droites orthogonales 2) Orthogonalité dune droite et dun plan

vecteur directeur d'une droite, vecteur normal à un plan deux droites D et D' de vecteur directeurs u et v non nul sont orthogonales si les Exercice : montrer que les hauteurs issues de A et B d'un tetraede ABCD sont concourantes si



[PDF] ORTHOGONALITE ET PRODUIT SCALAIRE DANS LESPACE

On dit que d1 et d2 sont orthogonales si pour un point M de l'espace, les droites d′ 1 Deux vecteurs u et v de l'espace sont dits orthogonaux si et seulement si u v = 0 Montrer que P et Q sont sécants et déterminer une représentation 



[PDF] Plan du chapitre 3, partie 1

Montrer que, si c est un réel positif et v est un vecteur de Rn, cv = c v ▻ Pour v = Deux vecteurs u and v sont orthogonaux si et seulement si u + v = u 2 + v 2

[PDF] montrer que 3 points sont alignés complexe

[PDF] montrer que 3 points sont alignés géométrie dans l'espace

[PDF] montrer que 3 points sont alignés vecteurs

[PDF] montrer que 4 point sont cocycliques

[PDF] montrer que 4 points appartiennent ? un même cercle complexe

[PDF] montrer que 4 points sont coplanaires

[PDF] montrer que abcd est un losange

[PDF] Montrer que ce texte est engager (en espagnole)

[PDF] montrer que deux droites sont confondues

[PDF] montrer que deux droites sont coplanaires

[PDF] montrer que deux droites sont perpendiculaires vecteurs

[PDF] montrer que deux droites sont sécantes dans l'espace

[PDF] montrer que deux droites sont sécantes dans un plan

[PDF] montrer que deux droites sont sécantes représentation paramétrique

[PDF] montrer que deux droites sont sécantes terminale s

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +v 2 -u 2 -v 2

Démonstration de la première formule :

u -v 2 =u -v 2 =u 2 -2u .v +v 2 =u 2 -2u .v +v 2 donc u .v 1 2 u 2 +v 2 -u -v 2

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Soit A, B et C trois points du plan. On a :

AB .AC 1 2 AB 2 +AC 2 -BC 2

Démonstration :

AB .AC 1 2 AB 2 +AC 2 -AB -AC 2 1 2 AB 2 +AC 2 -CB 2 1 2 AB 2 +AC 2 -BC 2

Exemple : Vidéo https://youtu.be/GHPvfaHnysg

CG .CF 1 2 CG 2 +CF 2 -GF 2 1 2 6 2 +7 2 -3 2 =38 III. Produit scalaire et orthogonalité 1) Vecteurs orthogonaux Propriété : Les vecteurs u et v sont orthogonaux si et seulement si u .v =0

. Démonstration : Si l'un des vecteurs est nul, la démonstration est évidente. Supposons le contraire.

u .v =0 ⇔u ×v

×cosu

;v =0 ⇔cosu ;v =0

Les vecteurs

u et v sont orthogonaux

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Projection orthogonale Définition : Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M. Propriété : Soit

u et v deux vecteurs non nuls du plan tels que u =OA et v =OB . H est le projeté orthogonal du point B sur la droite (OA). On a : u .v =OA .OB =OA .OH

Démonstration :

OA .OB =OA .OH +HB =OA .OH +OA .HB =OA .OH

En effet, les vecteurs

OA et HB sont orthogonaux donc OA .HB =0 . Exemple : Vidéo https://youtu.be/2eTsaa2vVnI Soit un carré ABCD de côté c. AB .AC =AB .AB =AB 2 =c 2 IV. Produit scalaire dans un repère orthonormé Le plan est muni d'un repère orthonormé O;i ;j . Propriété : Soit u et v deux vecteurs de coordonnées respectives x;y et x';y' . On a : u .v =xx'+yy'quotesdbs_dbs47.pdfusesText_47