[PDF] [PDF] Notes de cours sur la méthode des éléments finis

5 2 1 Etape 1: majoration par l'erreur d'interpolation les éléments de ces espaces Lp ne sont pas nécessairement des fonctions tr`es réguli`eres



Previous PDF Next PDF





[PDF] Méthode des éléments finis - CEL

26 nov 2008 · où u∗(M) représente la valeur de la fonction approchée en tout point M de l' élément et N, la matrice ligne des fonctions d'interpolation de l' 



[PDF] Notes de cours sur la méthode des éléments finis

5 2 1 Etape 1: majoration par l'erreur d'interpolation les éléments de ces espaces Lp ne sont pas nécessairement des fonctions tr`es réguli`eres



[PDF] Introduction à la méthode des éléments finis

1 1 5 élément Figure 1 2: Discrétisation en nœuds et éléments Le choix de formes polynomiales pour les fonctions d'interpolation et les conditions un(−1) = ui



[PDF] Méthode des éléments finis : élasticité plane - IUT Le Mans

24 mar 2006 · – les fonctions Ni(x, y) sont les fonctions d'interpolation (ou fonctions de forme) – [N(x, y)] est la matrice d'interpolation – 1U(t)l est le vecteur des 



[PDF] Méthode des Éléments Finis

Dans l'exemple que nous venons de traiter, nous avons utilisé l'élément réel pour définir les fonctions d'interpolation nodale En pratique tous ces calculs, pour 



[PDF] Méthode des éléments-finis par lexemple - Université de Caen

4 4 1 Maillage quadrangulaire `a 4 noeuds et interpolation linéaire La méthode des éléments-finis (MEF) est une méthode d'approximation En 1943 Robert Courant introduit le principe variationnel avec des fonctions de base `a sup-



[PDF] Méthode des éléments finis - Institut de Mathématiques de Toulouse

dérivées partielles par la méthode des éléments finis Depuis son Second membre de l'EDP : il est donné par la fonction / qui peut être définie seulement suivante (dite par interpolation) en se donnant ses valeurs nodales g sur les 



[PDF] Eléments finis de Lagrange

FIGURE 4 1 – fonctions de base locales pour l'élément fini de Lagrange P1 en que l'erreur d'interpolation u − uN H1 est contrôlée, en éléments finis P1



B3-5: Introduction aux éléments finis - EPFL

Fonctions de transformation et d'interpolation (suite) 10 Matrices d' M Dysli Buts du cours Buts du cours "Introduction aux éléments finis" (8 heures):



[PDF] ELEMENTS FINIS :

Eléments finis de degré un pour le problème de Dirichlet homogène Résolution numérique d'un problème d'interpolation 35 2 6 La formulation variationnelle de ce problème s'écrit : Trouver la fonction u apparte- nant à H1

[PDF] le quotient de la différence

[PDF] pgcd (a

[PDF] si d divise a et b alors d divise pgcd(a b)

[PDF] pgcd(a b)=pgcd(b r)

[PDF] pgcd(ka kb)=k pgcd(a b)

[PDF] conversion notes erasmus

[PDF] correspondance notes lettres

[PDF] conversion notes québec france

[PDF] équivalence note américaine française université

[PDF] note sur 20 en gpa

[PDF] tableau de conversion de notes european credit transfer system

[PDF] tableau de conversion des notes

[PDF] b2i adultes ressources

[PDF] b2i adultes greta

[PDF] b2i adultes exercices

Notes de cours

sur la methode des elements nis

M1 MAI

Eric Blayo

Janvier 2010

ii

Table des matieres

1 Outils d'analyse fonctionnelle 1

1.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Normes et produits scalaires . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Suites de Cauchy - espaces complets . . . . . . . . . . . . . . . . . . 2

1.2 Espaces fonctionnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Notion de derivee generalisee . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Fonctions tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Derivee generalisee . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Espaces de Sobolev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Les espacesHm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Trace d'une fonction . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 EspaceH10(

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction a la methode des elements nis 9

2.1 Formulation variationnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Exemple 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Exemple 2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Formulation generale . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Existence et unicite de la solution . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Continuite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Theoreme de Lax-Milgram . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Retour a l'exemple 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Remarque: condition inf-sup . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 EDP elliptiques d'ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Approximation interne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Principe general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Interpretation deuh. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Estimation d'erreur . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Principe general de la methode des elements nis . . . . . . . . . . . . . . . 16

2.6 Retour a l'exemple 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Elements nis de Lagrange 20

3.1 Unisolvance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Element ni de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Exemples d'elements nis de Lagrange . . . . . . . . . . . . . . . . . . . . . 21

iii

3.3.1 Espaces de polyn^omes . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Exemples 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Exemples 2-D triangulaires . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Exemples 2-D rectangulaires . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.5 Exemples 3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Famille ane d'elements nis . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Du probleme global aux elements locaux . . . . . . . . . . . . . . . . . . . . 24

4 Elements nis d'Hermite 27

4.1 Classe d'un element ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Elements nis d'Hermite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Lien avec les elements nis de Lagrange . . . . . . . . . . . . . . . . . 28

4.2.3 Fonctions de base globales . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Exemples 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Exemples 2-D triangulaires . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.3 Exemple 2-D rectangulaire . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Convergence de la methode des elements nis 31

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Calcul de majoration d'erreur . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Etape 1: majoration par l'erreur d'interpolation . . . . . . . . . . . . 32

5.2.2 Etape 2: Decomposition sur les elements . . . . . . . . . . . . . . . . 32

5.2.3 Etape 3: Passage a l'element de reference . . . . . . . . . . . . . . . . 32

5.2.4 Etape 4: Majoration sur l'element de reference . . . . . . . . . . . . . 34

5.2.5 Etape 5: Assemblage des majorations locales . . . . . . . . . . . . . . 34

5.2.6 Resultat nal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Quelques commentaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Quelques aspects pratiques de la methode des elements nis 37

6.1 Maillage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Assemblage de la matrice du systeme . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Formules de quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.2 Quadrature en 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.3 Quadrature en 2-D triangulaire . . . . . . . . . . . . . . . . . . . . . 41

6.4 Domaines a frontiere courbe . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A Coordonnees barycentriques 42

B Calcul d'integrales 45

B.1 Formules de Green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 B.2 Changement de variable dans une integrale . . . . . . . . . . . . . . . . . . . 45 iv

Chapitre 1

Outils d'analyse fonctionnelle

1.1 Quelques rappels

1.1.1 Normes et produits scalaires

SoitEun espace vectoriel.

Denition:k:k:E!IR+est unenormesurEssi elle verie:

(N1)(kxk= 0) =)(x= 0) (N2)82IR;8x2E;kxk=jj kxk (N3)8x;y2E;kx+yk kxk+kyk(inegalite triangulaire) Exemple:PourE= IRnetx= (x1;:::;xn)2IRn, on denit les normes kxk1=n X i=1jxij kxk2= nX i=1x2i! 1=2 kxk1= sup ijxij Denition:On appelleproduit scalairesurEtoute forme bilineaire symetrique denie positive. < :;: >:EE!IR est donc un produit scalaire surEssi il verie: (S1)8x;y2E; < x;y >=< y;x > (S2)8x1;x2;y2E; < x1+x2;y >=< x1;y >+< x2;y > (S3)8x;y2E;82IR; < x;y >= < x;y > (S4)8x2E;x6= 0; < x;x > >0 A partir d'un produit scalaire, on peut denir unenorme induite:kxk=p< x;x > On a alors, d'apres (N3), l'inegalite de Cauchy-Schwarz:j< x;y >j kxk kyk Exemple:PourE= IRn, on denit le produit scalaire< x;y >=n X i=1x iyi. Sa norme induite estk:k2denie precedemment. Un espace vectoriel muni d'une norme est appeleespace norme. 1 Un espace vectoriel muni d'un produit scalaire est appeleespace prehilbertien. En parti- culier, c'est donc un espace norme pour la norme induite.

1.1.2 Suites de Cauchy - espaces complets

Denition:SoitEun espace vectoriel et (xn)nune suite deE. (xn)nest unesuite de

Cauchyssi8" >0;9N=8p > N;8q > N;kxpxqk< "

Toute suite convergente est de Cauchy. La reciproque est fausse. Denition:Un espace vectoriel estcompletssi toute suite de Cauchy y est convergente. Denition:Un espace norme complet est unespace de Banach. Denition:Un espace prehilbertien complet est unespace de Hilbert. Denition:Un espace de Hilbert de dimension nie est appeleespace euclidien.

1.2 Espaces fonctionnels

Denition:Unespace fonctionnelest un espace vectoriel dont les elements sont des fonctions. Exemple:Cp([a;b]) designe l'espace des fonctions denies sur l'intervalle [a;b], dont toutes les derivees jusqu'a l'ordrepexistent et sont continues sur [a;b]. Dans la suite, les fonctions seront denies sur un sous-ensemble de IR n(le plus souvent un ouvert note ), a valeurs dans IR ou IR p. Exemple:La temperatureT(x;y;z;t) en tout point d'un objet

IR3est une fonction de

IR!IR.

Les normes usuelles les plus simples sur les espaces fonctionnels sont lesnormes Lpdenies par: kukLp= Z jujp1=p; p2[1;+1[;etkukL1= Sup juj Comme on va le voir, ces formesLpne sont pas necessairement des normes. Et lorsqu'elles le sont, les espaces fonctionnels munis de ces normes ne sont pas necessairement des espaces de Banach. Par exemple, les formesL1etL1sont bien des normes sur l'espaceC0([a;b]), et cet espace est complet si on le munit de la normeL1, mais ne l'est pas si on le munit de la normeL1.

Pour cette raison, on va denir les espacesLp(

) (p2[1;+1[) par L p( u: !IR;mesurable, et telle queZ jujp<1 2 ( on rappelle qu'une fonctionuest mesurable ssifx=ju(x)j< rgest mesurable8r >0. )

Sur ces espacesLp(

), les formesLpne sont pas des normes. En eet,kukLp= 0 implique queuest nulle presque partout dansLp( ), et non pasu= 0. C'est pourquoi on va denir lesespaces Lp(

Denition:Lp(

) est la classe d'equivalence des fonctions deLp( ) pour la relation d'equivalence \egalite presque partout". Autrement dit, on confondra deux fonctions des lors qu'elles sont egales presque partout, c'est a dire qu'elles ne dierent que sur un en- semble de mesure nulle.

Theoreme:La formeLpest une norme surLp(

), etLp( ) muni de la normeLpest un espace de Banach (c.a.d. est complet). Un cas particulier tres important estp= 2. On obtient alors l'espace fonctionnelL2( c'est a dire l'espace des fonctions de carre sommable sur (a la relation d'equivalence \egalite presque partout" pres). A la normeL2:kukL2= (R u2)1=2, on peut associer la forme bi- lineaire (u;v)L2=R uv. Il s'agit d'un produit scalaire, dont derive la normeL2. D'ou:

Theoreme:L2(

) est un espace de Hilbert.

1.3 Notion de derivee generalisee

Nous venons de denir des espaces fonctionnels complets, ce qui sera un bon cadre pour demontrer l'existence et l'unicite de solutions d'equations aux derivees partielles, comme on le verra plus loin notamment avec le theoreme de Lax-Milgram. Toutefois, on a vu que les elements de ces espacesLpne sont pas necessairement des fonctions tres regulieres. Des lors, les derivees partielles de telles fonctions ne sont pas forcement denies partout. Pour s'aranchir de ce probleme, on va etendre la notion de derivation. Le veritable outil a introduire pour cela est la notion dedistribution, due a L. Schwartz (1950). Par manque de temps dans ce cours, on se contentera ici d'en donner une idee tres simpliee, avec la notion dederivee generalisee. Cette derniere a des proprietes beaucoup plus limitees que les distributions, mais permet de \sentir" les aspects necessaires pour mener a la formulation variationnelle.

Dans la suite,

sera un ouvert (pas necessairement borne) de IR n.

1.3.1 Fonctions tests

Denition:Soit':

!IR. On appellesupport de'l'adherence defx2 ='(x)6= 0g.

Exemple:Pour

=]1;1[, et'la fonction constante egale a 1, Supp'= [1;1].

Denition:On noteD(

) l'espace des fonctions de vers IR, de classeC1, et a support 3 compact inclus dans .D( ) est parfois appeleespace des fonctions-tests. Exemple:L'exemple le plus classique dans le cas 1-D est la fonction '(x) =(e11x2sijxj<1quotesdbs_dbs13.pdfusesText_19