[PDF] [PDF] Exercices de probabilités avec éléments de correction Memento

Montrer que R et Θ sont indépendantes et déterminer leurs lois Exercice 5 Loi Gamma Pour a > 0 et λ > 0, on définit la loi γa,λ par sa densité relativement à 



Previous PDF Next PDF





[PDF] Exercices corrigés - IMT Atlantique

pour la densité de probabilité gaussienne de moyenne nulle et de variance unitaire EXERCICE 1 5 – [sin(x)/x n'est pas intégrable] 1 Montrer que pour tout k 



[PDF] Exercices de probabilités avec éléments de correction Memento

Montrer que R et Θ sont indépendantes et déterminer leurs lois Exercice 5 Loi Gamma Pour a > 0 et λ > 0, on définit la loi γa,λ par sa densité relativement à 



[PDF] Loi de probabilité `a densité : Exercices Corrigés en - Jai compris

Calculer des probabilités avec une variable aléatoire continue On consid`ere la fonction f définie sur [0; +∞[ par f(x) = e−x et X est une variable aléatoire de 



[PDF] Exercices et problèmes de statistique et probabilités - Dunod

Corrigés des exercices centrale), Lois de probabilités fréquemment utilisées en statistique (Loi normale une fonction densité de probabilité f de X vérifiant :



[PDF] Exercices de Probabilités

Calculer les densités de U et V , notées respectivement fU et fV On pourra s' intéresser aux fonctions de répartitions 2 On considère Xn des variables aléatoires 



[PDF] Variables aléatoires continues - Institut de Mathématiques de

Exercice 1 Soit X une variable aléatoire dont la fonction de répartition est Déterminer la constante A pour que la fonction f soit une densité de probabilité 2



[PDF] Exercices de M athématiques du SignalAléatoire M AA104

corrigé 4 Exercice 5 calculs de probabilités Lorsque Nicolas joue aux échcs contre la densité de probabilité de la variable aléatoire X La probabilité que X  



Corrigés des exercices

Bn = {x}, événement dont la probabilité se note conventionnellement P(X = x) D' o`u Appliquons avec p = 2 la formule générale de la densité gaussienne d'un



[PDF] I Exercice autour de densité, fonction de répatition, espérance et

14 mar 2014 · 0 sinon Montrer que f est une densité de probabilité f est une densité du produit de deux variables indépendantes qui suivent une loi uniforme 



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

6 Fondements de la théorie des probabilités 41 7 1 2 Densités de variables indépendantes Merci aussi `a Antoine Mal qui a corrigé l'exercice 7 4 1 (a) iii  

[PDF] densité de probabilité fonction de répartition exercice corrigé

[PDF] density conversion factors table

[PDF] dental ceramics mcqs

[PDF] denver classification of chromosomes

[PDF] depart tgv nantes paris horaires

[PDF] departement de naissance 3 chiffres france

[PDF] département de naissance étranger

[PDF] département de naissance paris

[PDF] departement paris 12

[PDF] departement paris 12e

[PDF] département paris 12ème

[PDF] department of justice defensive gun use

[PDF] departure tax by country

[PDF] dependent prepositions exercises pdf

[PDF] depistage coronavirus biarritz

[PDF] Exercices de probabilités avec éléments de correction Memento Université Paris 13, Institut Galilée Préparation à l"agrégation

Année universitaire 2013-2014

Exercices de probabilités

avec éléments de correctionMemento

Fonctions associées aux lois

PourXvariable aléatoire à valeurs dansRd,

F onctionde répartition (si d= 1) :FX(t) =P(Xt),t2R F onctiongénératrice (si Xà valeurs dansN) :GX(s) =E[sX] =P1 n=0P(X=n)sn,s2 j R;Rj T ransforméede Laplace : LX() =E[eh;Xi]2]0;+1],2Rd F onctioncaractéristique : X(t) =E[eiht;Xi]2C,t2Rd Lois discrètesNomParamètresSupportDéfinition :P(A) =P

a2Ap(a)Loi de Diracaa2Rfagp(a) = 1Loi de BernoulliB(p)p2[0;1]f0;1gp(0) = 1p,p(1) =pLoi binomialeB(n;p)n2N,p2[0;1]f0;:::;ngp(k) =n

kpk(1p)nkLoi géométriqueG(p)p2]0;1]N p(k) = (1p)k1pLoi de PoissonP()2]0;+1[Np(k) =ekk!Lois continues

NomParamètresSupportDéfinition :P(A) =R

Af(x)dxLoi uniformeU([a;b])a < b[a;b]f(x) =1ba1[a;b](x)Loi exponentielleE()2]0;1[]0;+1[f(x) =ex1]0;+1[(x)Loi de Cauchya2]0;+1[Rf(x) =a(a2+x2)Loi normale/gaussienneN(m;2)m2R; 22]0;+1[Rf(x) =1p22exp

(xm)222Déterminer des lois : exemples

Exercice 1.Lois binomiale et géométrique

SoitX1;X2;:::une suite de variables aléatoires indépendantes et de loiB(p)oùp2[0;1].

1.On supposep >0. On définitN= inffn1jXn= 1g.

1.a)Montrer queP(N=1) = 0et queNsuit la loi géométrique de paramètrep.

1.b)Calculer l"espérance et la variance deN.

2.Soitn1. On définitSn=X1++Xn.

2.a)Montrer queSnsuit la loi binomiale de paramètresnetp, par une preuve directe puis en utilisant des

fonctions génératrices.

2.b)Calculer l"espérance et la variance deSn(utiliser la définition deSn).

Exercice 2.Minimum et maximum d"une famille de variables aléatoires exponentielles

SoitX;Ydeux variables aléatoires indépendantes de lois respectivesE()etE(). À l"aide de fonctions de

répartition, déterminer les lois deU= min(X;Y)etV= max(X;Y). On précisera leur densité (le cas échéant).

Exercice 3.Somme de variables aléatoires

1.SoitX;Ydes variables aléatoires indépendantes de loisP()etP(). Déterminer la loi deX+Y, directement

puis via les fonctions génératrices.

2.SoitX;Ydes variables aléatoires indépendantes de loi de Cauchy de paramètreaetb. À l"aide des fonctions

caractéristiques, déterminer la loi deX+Y.Pour obtenirX, on pourra utiliser la formule de Cauchy avec un

contour bien choisi, ou alors avoir l"idée de calculer la fonction caractéristique de la loi de Laplace

a2 eajxjdx et utiliser la formule d"inversion.

Exercice 4.Lois images

1.SoitXune variables aléatoire de loiE(). Déterminer la loi debXc+ 1.C"est une loi géométrique.

2.SoitUune variable aléatoire de loiU([1;1]). Déterminer la loi dearcsin(U).

3.SoitXde loiN(0;1). Déterminer la loi dejXj.

1

4.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). Déterminer la loi deXY

. En déduire la loi de 1Z siZsuit une loi de Cauchy de paramètre 1.

5.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). On définit les variables aléatoiresR;par

(X;Y) = (Rcos;Rsin),R >0et2[0;2[. Montrer queRetsont indépendantes et déterminer leurs lois.

Exercice 5.Loi Gamma

Poura >0et >0, on définit la loi

a;par sa densité relativement à la mesure de Lebesgue : f a;(x) =a(a)xa1ex1R+(x):

1.Vérifier que cette fonction définit bien une densité.

2.Déterminer l"espérance de cette loi.On utilise le fait que(a+ 1) =a(a)pour obtenir que l"espérance de cette loi esta=.

3.SoitV1;V2;:::;Vndes variables aléatoires réelles indépendantes de loiE(). Déterminer la loi du vecteur

(V1;V1+V2;:::;V1++Vn)et en déduire queV1++Vn n;.Pourn= 1, ok. Supposonsn2etS:=V1+:::+Vn1de loi n1;. Soitgune fonction mesurable bornée deRdansR. On a

E(g(V1+:::+Vn)) =E(g(S+Vn)) =Z

R g(x+y)dP(S;Vn)(x;y) et

E(g(V1+:::+Vn)) =Z

R g(t)dPV1+:::+Vn(t): Commef(v1;:::;vn1) =v1+:::+vn1etg(vn) =v2nmesurables on en déduit queSetVnsont indépen- dantes car(V1;:::;Vn1)etVnle sont, Z R g(x+y)dP(S;Vn)(x;y) =Z 1 0 dxZ 1 x dtg(t)n1(n1)etxn2 Z 1 0 g(t)n1(n1)etxn1=(n1)t 0dt Z R g(t)n(n)exp(t)tn11R+(t)dt

4.SoitXetYdeux variables aléatoires réelles indépendantes de loi

a;.

4.a)Déterminer la loi deX.On peut utiliser la fonction de répartition. Avec un changement de variable on voit queX

a;1.

4.b)Montrer queX+YetX=Ysont des v.a. indépendantes dont on calculera les lois.Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=Y)) =Z

quotesdbs_dbs2.pdfusesText_2