[PDF] [PDF] NOMBRES COMPLEXES

Soit un nombre complexe z = a + ib avec a ∈ IR et b ∈ IR • si b = 0 , on i θ x e i θ' = e i (θ + θ') , facile à retenir, permet de retrouver les formules d'addition :



Previous PDF Next PDF





[PDF] Les nombres complexes - PanaMaths

Synthèse de cours PanaMaths (Terminale S) Le réel y est appelé « partie imaginaire du nombre complexe z » et est notée : ( ) on tire les formules d'Euler :



[PDF] Mathématique en Terminale S Les nombres complexes

En fait, il aurait volé les formules `a Tartaglia, qui les aurait volées `a Scipio Del Ferro 3/12 Page 4 Les nombres complexes Terminale S Section 



[PDF] Cours complet sur les nombres complexes - TS - Bacamaths

A la fin du XVIème siècle, le mathématicien Bombelli applique cette formule à l' équation x3 − 15x Les éléments de sont appelés des nombres complexes



[PDF] Chapitre 4 Nombres complexes, fonctions et formules

Tout nombre complexe non nul tel que (z)=0 est appelé imaginaire pur Soient z = a + ib et z = a + ib (a, b, a ,b ∈ R) 



[PDF] Les nombres complexes - Lycée dAdultes

PAUL MILAN 5 janvier 2012 TERMINALE S Théorème 1 : A tout nombre complexe z = a + ib, on peut faire corres- pondre un point M(a; Remarque : Cette formule découle de la propriété module argument de zn Exemples : 1) Trouver la 



[PDF] NOMBRES COMPLEXES

Soit un nombre complexe z = a + ib avec a ∈ IR et b ∈ IR • si b = 0 , on i θ x e i θ' = e i (θ + θ') , facile à retenir, permet de retrouver les formules d'addition :



[PDF] Les nombres complexes - Maths-francefr

Les nombres complexes Forme algébrique Partie réelle, partie imaginaire La forme algébrique d'un nombre complexe est a + ib où a et b sont deux réels



[PDF] Les nombres complexes - Maths-francefr

dire que si z et z′ sont deux nombres complexes qui sont en particulier tous les Avec les formules du théorème 11, on retrouve les caractérisations du théorème 10 car par exemple Cette notation ne peut pas être comprise en Terminale



[PDF] NOMBRES COMPLEXES - maths et tiques

Exemples : 3+ 4i ; −2 − i ; i 3 sont des nombres complexes Vocabulaire : - L' écriture a + ib d'un nombre complexe z est appelée la forme algébrique de z

[PDF] formule complexe exponentielle

[PDF] formule complexe module

[PDF] liaison intermoléculaire et intramoléculaire

[PDF] interaction de van der waals liaison hydrogène

[PDF] interaction intermoléculaire 1ere s

[PDF] force de debye

[PDF] nombres complexes terminale s annales

[PDF] liaison intermoléculaire définition

[PDF] force dipole dipole

[PDF] interaction intermoléculaire definition

[PDF] force de debye exemple

[PDF] formule du champ magnétique

[PDF] exercice corrigé magnetisme

[PDF] induction magnétique formule

[PDF] clavier packard bell bloqué

Ch4 : Nombres complexes (TS)

- 1/18 -

NOMBRES COMPLEXES

I. INTRODUCTION ET DEFINITION

Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et -3 et 2 a pour racine2 et -2.

Par contre, aucun réel négatif n"a de racine (réelle). C"est pour pallier à cette discrimination que furent créer les nombres complexes.

Le nombre i :

On appelle

i un nombre dont le carré est -1. On décrète que i est la racine de -1. Ainsi : i2 = -1

De plus, son opposé -

i a aussi pour carré -1. En effet : (-i)2 = [(-1) × i]2 = (-1)2 × i2 = -1 Conclusion : Les deux racines de -1 sont deux nombres irréels i et -i.

Le nombre

i est appelé nombre imaginaire. L forme factorisée de x2 + 1 est (x + i) . (x - i)

Un peu d"histoire : le nombre i a longtemps été noté -1 pour la raison évidente que i a pour carré -1.

La notation i fut introduite par Euler en 1777, puis reprise par Gauss au début du XIXème siècle. Cependant le premier

à parler de nombre imaginaire fut le très cartésien Descartes en 1637.

Remarques

· IN est l"ensemble des entiers naturels. C"est l"ensemble des entiers positifs ou nuls. Dans IN l"équation x + 1 = 0 n"a pas de solution. Cette équation a une solution notée -1 , élément de l"ensemble ZZ .

· ZZ est l"ensemble des entiers relatifs. C"est l"ensemble des entiers positifs, négatifs ou nuls.

IN est contenu dans ZZ , ce que l"on note IN Ì ZZ . Dans ZZ l"équation 2x = 1 n"a pas de solution.

Cette équation a une solution notée

1 2 , élément de l"ensemble QI .

· QI est l"ensemble des nombres rationnels

C"est l"ensemble de tous les nombres de la forme

p q avec p Î ZZ et q Î ZZ * . QI contient ZZ . On a donc IN Ì ZZ Ì QI .

Dans QI l"équation x

2 = 2 n"a pas de solutions.

Cette équation a deux solutions notées

2 et -2 , éléments de l"ensemble IR.

· IR est l"ensemble des nombres réels. C"est l"ensemble des abscisses de tous les points d"une droite.

IR contient QI . On a donc IN Ì ZZ Ì QI Ì IR .

Dans IR l"équation x

2 = -1 n"a pas de solutions.

Cette équation a deux solutions notées i et -i , solutions de l"ensemble CI .

· CI est l"ensemble des nombres complexes.

C"est l"ensemble des nombres de la forme a + ib avec a Î IR et b Î IR. CI contient IR . On a donc IN Ì ZZ Ì QI Ì IR Ì CI .

Ch4 : Nombres complexes (TS)

- 2/18 -

Définition

On appelle corps des nombres complexes, et on note CI un ensemble contenant IR tel que : · Il existe dans CI un élément noté i tel que i 2 = -1. · Tout élément de CI s"écrit sous la forme a + ib , où a et b sont des réels.

· CI est muni d"une addition et d"une multiplication qui suivent les mêmes règles de calcul que celles

connues dans ô Un nombre complexe sera souvent représenté par la lettre z.

Nombres complexes particuliers

Soit un nombre complexe z = a + ib avec a Î IR et b Î IR . · si b = 0 , on a z = a , z est un réel.

· si a = 0 , on a z = ib , on dit que z est un imaginaire pur (on dit parfois simplement imaginaire).

Remarques

· IR correspond à l"ensemble des points sur une droite. Un nombre réel x correspond au point d"abscisse x sur la droite. On peut donc toujours comparer deux nombres réels.

· CI , ensemble des nombres a + ib avec a Î IR et b Î IR correspond à l"ensemble des points d"un plan.

Un nombre complexe a + ib avec a Î IR et b Î IR correspond au point du plan de coordonnées (a ; b).

On ne peut donc pas comparer deux nombres complexes : il n"y a pas de relation d"ordre dans CI .

On ne peut donc pas dire qu"un nombre complexe z est inférieur à un nombre complexe z" ou qu"un

nombre complexe z est positif (c"est-à-dire supérieur à 0).

Définition :

Soit un nombre complexe z .

L"écriture z = a + ib , où a et b sont des réels, est appelée forme algébrique du nombre complexe z.

a est appelé partie réelle de z, et b partie imaginaire de z : on note a = Re(z) et b = Im(z).

Remarque

· La partie réelle de z et la partie imaginaire de z sont des nombres réels.

Propriété :

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

C"est-à-dire que si a, b, a", b" sont des réels, on a a + ib = a" + ib" Û (a ; b) = (a" ; b") Û ??? a = a"b = b"

Exercice 01

Soit z = 2 + 3i ; z" = i - 5.

Calculer et écrire sous la forme algébrique z + z" ; z - z" ; 2z - 3z" ; zz" ; z

2 z + z" = 2 + 3i + i - 5 = -3 + 4i z - z" = 2 + 3i - (i - 5) = 2 + 3i - i + 5 = 7 + 2i

2z - 3z" = 2(2 + 3i) - 3(i - 5) = 4 + 6i - 3i + 15 = 19 + 3i

zz" = (2 + 3i)(i - 5) = 2i - 10 + 3i

2 - 15i = 2i - 10 - 3 - 15i = - 13 - 13i

z

2 = (2 + 3i)2 = 22 + 2 x 2 x 3i + (3i)2 = 4 + 12i + 9i2 = 4 + 12i - 9 = -5 + 12i

Exercice 02

1°) Calculer (3 + 2i)(3 - 2i). En déduire la forme algébrique de 1

3 + 2i

(utiliser l"expression conjuguée).

2°) Déterminer la forme algébrique des nombres complexes : 1

1 + i ; 1

3 - i ; 1

i

1°) (3 + 2i)(3 - 2i) = (3)

2 - -(2i)2 = 9 - (-4) = 9 + 4 = 13

Ch4 : Nombres complexes (TS)

- 3/18 -

La forme algébrique de 1

3 + 2i est 3

13 - 2

13 i

2°) La forme algébrique de

1 1 + i est 1 2 - 1 2 i

La forme algébrique de

1 3 - i est 3

10 + 1

10 i

La forme algébrique de

1 i est - i

II. REPRESENTATION GRAPHIQUE

Un nombre complexe est formé de deux nombres réels. Or deux nombres réels forment un couple de

coordonnées. Ainsi, si le plan est muni d"un repère orthonormé on peut repérer tout point par un nombre

complexe. a) Affixe

Définition :

On se place dans le plan rapporté à un repère orthonormal direct (O;®u,®v) . ■ Au point M de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a +i b est l"affixe de M

■ Au vecteur ¾®V de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a + ib est l"affixe de ¾®V

■ Lorsqu"on repère un point ou un vecteur par son affixe dans un repère orthonormal direct, on dit qu"on se

place dans le plan complexe.

Exercice 03

Placer dans le plan complexe, les points d"affixes : z

1 = 2 + 3i ; z2 = 3 + i ; z3 = -1 + 2i ; z4 = 2 - i ; z5 = i

z

6 = -i ; z7 = 1 ; z8 = -i - 3 ; z9 = 2z1 - 3z2 ; z10 = z3(z4 - z2)

Propriétés

Si M a pour affixe z = a + ib et si M" a pour affixe z" = a" + ib" , avec a, b, a", b" réels, alors

· le vecteur ¾®MM" a pour affixe z" - z = (a" - a) + (b" - b)i

· OM = ||¾®OM|| = a2 + b2

· MM" = ||¾®MM"|| = (a" - a)2 + (b" - b)2 · le milieu I de [MM"] a pour affixe zI = z + z" 2 Si

¾®V a pour affixe z et

¾®V " pour affixe z", alors

¾®V +

¾®V " a pour affixe z + z".

Si k est un réel, alors k¾®V a pour affixe k z. b) Conjugué

Définition

Soit z un nombre complexe de forme algébrique a + ib. On appelle conjugué de z le nombre complexe noté -z tel que -z = a - ib.

Remarque

Si M est le point d"affixe z, le point M" d"affixe ¾z est symétrique de M par rapport à l"axe des abscisses.

Ch4 : Nombres complexes (TS)

- 4/18 -

Exercice 04

Étant donné un point M d"affixe z = a + ib , avec a et b réels. Placer ···· le point M" d"affixe z" = a - ib , ···· le point M" d"affixe z" = -a + ib , ···· le point M"" d"affixe z"" = -a - ib = - z .

Exercice 05

Soit z = 3 + 5i et z" = -2 + 3i.

Calculer

¾¾¾¾z ; ¾¾¾¾z" ; ¾¾¾¾z + ¾¾¾¾z" ; z + z" ; z + z" ; ¾¾¾¾z.¾¾¾¾z" ; zz" ; zz" .

-z = 3 - 5i -z" = -2 - 3i -z + -z" = 3 - 5i - 2 - 3i = 1 - 8i z + z" = 3 + 5i - 2 + 3i = 1 + 8i z + z" = 1 + 8i = 1 - 8i ¾z.¾z" = (3 - 5i)(-2 - 3i) = -6 - 9i + 10i +15i2 = -6 + i - 15 = -21 + i zz" = (3 + 5i)(-2 + 3i) = -6 + 9i - 10i +15i

2 = -6 - i - 15 = -21 - i

zz" = -21 - i = -21 + i

Propriétés

Pour tous nombres complexes z et z", on a :

· ¾z = z

· z.¾z est un réel positif

· z + z" = ¾z + ¾z" ; z - z" = ¾z - ¾z" ; zz" = ¾z.¾z"

· Si z" ¹ 0 (())

1 z" = 1 z" ; (()) z z" = ¾z z"

· Re(z) = z +

¾z

2 ; Im(z) = z -

¾z 2i · z est réel Û z = ¾z ; z est imaginaire pur Û z = - ¾z

Démonstrations :

Soient les nombres complexes écrits sous la forme algébrique : z = a + ibi et z" = a" + ib".

· -z = a - ib donc ¾z = a + ib = z

· z.

¾z = (a + ib)(a - ib) = a2 - (ib)2 = a2 - (-b2) = a2 + b2 donc z.¾z est un réel positif .

· z + z" = a + ib + a" + ib" = (a+a") + i(b+b") comme (a+a") et (b+b") sont des réels, on obtient z + z" = (a+a") - i(b+b") = a - ib + a" - ib" = ¾z + ¾z" · zz" = (a + ib)(a" + ib") = aa" + iab" + ia"b + bb"i

2 = (aa" - bb") + i(ab" + a"b)

comme (aa" - bb") et (ab" + a"b) sont des réels, on obtient zz" = (aa" - bb") - i(ab" + a"b).

D"autre part

¾z.¾z" = (a - ib)(a" - ib") = aa" - iab" - ia"b + bb"i 2 = (aa" - bb") - i(ab" + a"b) donc zz" = ¾z.¾z"

· Si z" # 0 1

z" = 1 a" + b"i = a" - b"i (a" + b"i)(a" - b"i) = a" - b"i a"2 + b"2 = a" a"2 + b"2 +i - b" a"2 + b"2 Comme a" a"

2 + b"2 et - b"

a"2 + b"2 sont des réels, on en déduit (()) 1 z" = a" a"2 + b"2 + ib" a"2 + b"2

D"autre part

¾z" = a" - ib", donc 1

¾z" = 1

a" - b"i = a" + b"i (a" - b"i)(a" + b"i) = a" + b"i a"2 + b"2 = a" a"

2 + b"2 + ib"

a"2 + b"2 Donc 1 z" = 1 z"

Ch4 : Nombres complexes (TS)

- 5/18 -

· Si z" # 0 (())

z z" = (())z x 1 z" = -z x (()) 1 z" (d"après la propriété sur le produit) -z x 1 z" (d"après la propriété précédente) ¾zquotesdbs_dbs41.pdfusesText_41