[PDF] [PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

La fonction logarithme népérien, notée ln, est la fonction : ] [ ln: 0;+∞ →ℝ x lnx Remarque : Cette formule permet de transformer un produit en somme Ainsi 



Previous PDF Next PDF





[PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

La fonction logarithme népérien, notée ln, est la fonction : ] [ ln: 0;+∞ →ℝ x lnx Remarque : Cette formule permet de transformer un produit en somme Ainsi 



[PDF] Chapitre 6 : Logarithme

e 3 formules du changement de base Problème : comment calculer logb a avec une machine qui ne sait calculer que loga et



[PDF] FORMULAIRE

du domaine de définition de la formule : par exemple √a sous-entend a 李 0, n ∈ N∗, k est une constante Logarithme et Exponentielle : eln x = ln(ex) = x



[PDF] LOGARITHME NEPERIEN - Pierre Lux

Ainsi à tout réel x strictement positif, on peut associer un unique réel noté ln ( x ) Définition On appelle fonction logarithme népérien la fonction qui à un réel x 



[PDF] La fonction logarithme népérien - Lycée dAdultes

3 déc 2014 · comme la fonction exponentielle est strictement croissante, on a : ln a < ln b La fonction logarithme est donc strictement croissante Propriété 1 : 



[PDF] LES LOGARITHMES

La fonction ainsi définie (appelée logarithme décimal ou logarithme vulgaire, 1 ) Les logarithmes décimaux interviennent dans de nombreuses formules de 



[PDF] Fonction logarithmique - Sylvain Lacroix

Généralité Définition: Toute fonction logarithmique est la réciproque d'une fonction exponentielle y = logc x se lit comme suit : le logarithme de X à la base c



[PDF] Puissances, racines, exponentielles et logarithmes - JavMathch

3 1 Logarithme en base 10 (ou logarithme décimal) 3 4 Propriétés des logarithmes est-elle supérieure ou inférieure à celle d'un bolide de formule 1?



[PDF] PRINCIPE DUTILISATION DUNE TABLE DE LOGARITHMES

On dit que l'on a remplacé le produit (des deux nombres) par une somme (de leur logarithme) Quelle formule générale peut-on énoncer, faisant intervenir 

[PDF] formule exponentielle ln

[PDF] formule exponentielle pdf

[PDF] formule exponentielle terminale es

[PDF] cours de macroéconomie 1

[PDF] mathématique financière exercices

[PDF] formule geometrie triangle

[PDF] les figures géométriques et leurs formules

[PDF] formule geometrie aire

[PDF] geometrie formule aire et perimetre

[PDF] formules géométrie dans l'espace

[PDF] nouvelle fantastique pdf

[PDF] louison et monsieur molière livre entier

[PDF] nouvelle fantastique expression écrite

[PDF] louison et monsieur molière résumé chapitre 3

[PDF] marie christine helgerson

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un trava il de 20 ans , Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addi tion (paragra phe II). Ceci peut paraît re dérisoire aujourd'hui, ma is il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur ℝ, à valeurs dans

0;+∞

. D'après le théorème des valeurs intermédiaires, pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans ℝ.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ][ ln:0;+∞→ x!lnx

Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre. - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation

y=x

. - Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log est définie par :

log(x)= lnx ln10

Conséquences : a)

y=lnxavecx>0⇔x=e y b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

II. Propriété de la fonction logarithme népérien 1) Relation fonctionnelle Théorème : Pour tous réels x et y strictement positifs, on a : ()lnlnln xyxy ×=+

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

e ln(x×y) =x×y=e lnx ×e lny =e lnx+lny

Donc ()lnlnln xyxy ×=+

Remarque : Cette formule permet de transformer un produit en somme. Ainsi, celui qui aurait à effectuer 36 x 62, appliquerait cette formule, soit : log(36 x 62) = log(36) + log(62) ≈ 1,5563 + 1,7924 (voir table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : log(36 x 62) ≈ 3,3487 En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : 36 x 62 = 2232. 2) Conséquences Corollaires : Pour tous réels x et y strictement positifs, on a : a)

ln 1 x =-lnx b) ln x y =lnx-lny c) lnx= 1 2 lnx d) lnx n =nlnx avec n entier relatif Démonstrations : a) 11 lnlnln ln1 0xx xx b) 11 lnlnln lnlnln x xxxy yyy c) ()

2lnlnl nlnlnxxxxxx=+=×=

d) On démontre ce résultat par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ()

1 lnlnln lnln ln(1 )ln nnn xxxxxnxxnx

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Simplifier une expression Vidéo https://youtu.be/HGrK77-SCl4 ()()

ln35 ln3 5A=-++

B=3ln2+ln5-2ln3

C=lne 2 -ln 2 e ln35 ln3 5 ln35 35 ln95 ln4 A=-++

B=3ln2+ln5-2ln3

=ln2 3 +ln5-ln3 2 =ln 2 3 ×5 3 2 =ln 40
9 C=lne 2 -ln 2 e =2lne-ln2+lne =2-ln2+1 =3-ln2

III. Etude de la fonction logarithme népérien 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : La fonction ln est continue sur

0;+∞

, donc pour tout réel a > 0, on a : lim x→a lnx=lna . Donc par composée de limites, en posant X=lnx lim x→a lnx-lna x-a =lim

X→lna

X-lna e X -e lna =lim

X→lna

1 e X -e lna X-lna Comme la fonction exponentielle est dérivable sur ℝ, on a : lim

X→lna

1 e X -e lna X-lna 1 e lna 1 a et donc lim x→a lnx-lna x-a 1 aquotesdbs_dbs42.pdfusesText_42