[PDF] [PDF] Mécanique Quantique 1 —– CORRIGÉ Séance dexercices 1 : États

Mécanique Quantique 1 —– CORRIGÉ La première partie de ce document donne la correction détaillée de la séance d'exercice 1 sur les états liés du puits  



Previous PDF Next PDF





[PDF] Mécanique Quantique III - De Boeck Supérieur

extenso les corrigés des exercices et probl`emes proposés `a la fin de chaque chapitre de l'ouvrage Mécanique Quantique, tomes I et II Chaque probl`eme 



[PDF] Travaux dirigés de mécanique quantique

Suggestion : Partez du vecteur propre +1 de σz et appliquez les transformations necessaires Exercice 17 : Variables cachées et spin 1/2 En physique quantique, l 



[PDF] Mécanique quantique - Laboratoire de Physique Théorique et

1 4 Aperçu des postulats de la mécanique quantique 13 Exercices, dont le degré de difficulté est précisé : F, MF, D ou TD 5 puis corrigée en 1905 par James Jeans, est déduite du théor`eme d'équipartition de l' énergie de la 



[PDF] Examen de Mécanique Quantique

14 nov 2013 · La rotation de l'électron sur lui même ("spin" en anglais) peut être mise en évidence en plongeant, par exemple, un atome d'hydrogène dans 



[PDF] Mécanique Quantique 1 —– CORRIGÉ Séance dexercices 1 : États

Mécanique Quantique 1 —– CORRIGÉ La première partie de ce document donne la correction détaillée de la séance d'exercice 1 sur les états liés du puits  



[PDF] Mécanique Quantique Travaux Dirigés

Master de Physique 1ère année - Mécanique Quantique TD 1: Systèmes quantiques de dimension finie Exercice 1 1- Atome à 2 niveaux dans l' approximation 



[PDF] MÉCANIQUE QUANTIQUE

la mécanique quantique est une théorie très ambitieuse : prédire (ou au moins expliquer) En fait, vous démontrerez en TD dans quelques semaines que h/2 est une borne inférieure 1 4 Exercice corrigé : le paquet d'onde gaussien



[PDF] R e ecu en M eil d Méc de s cani sujet que ts d e Qu dexa uant ame

28 fév 2017 · Sujets d'examen Mécanique Quantique Licence et Master de Physique R MEZHOUD MCA, Département de Physique Faculté des 



[PDF] Mécanique quantique – Corrigé du TD 7

Mécanique quantique – Corrigé du TD 7 Antoine Bourget - Alain Comtet - Antoine Tilloy 1 Molécule cyclique 1 Il s'agit simplement d'imposer des conditions 



[PDF] Introduction à la physique quantique - Psychaanalyse

Développements et applications à basse énergie 3e éd ASLANGUL C , Mécanique quantique 3 Corrigés détaillés et commentés des exercices et problèmes

[PDF] examen corrigé de microbiologie s3

[PDF] examen corrigé de physiologie végétale

[PDF] examen corrigé de probabilité et statistique

[PDF] examen corrigé gestion de projet informatique

[PDF] examen corrigé gestion de projet pdf

[PDF] examen corrigé hacheur

[PDF] examen corrigé management stratégique

[PDF] examen corrigé mecanique analytique

[PDF] examen corrigé probabilité pdf

[PDF] examen corrigé thermodynamique 2

[PDF] examen corrigé+microéconomie

[PDF] examen cryptographie correction

[PDF] examen cti 0209

[PDF] examen cytobactériologique des crachats fiche technique

[PDF] examen cytobactériologique des liquides d épanchement

École polytechnique de Bruxelles PHYSH301/2016-2017

Mécanique Quantique 1 -- CORRIGÉ

La première partie de ce document donne la correction détaillée de la séance d"exercice 1 sur les

états liés du puits carré. La deuxième partie de ce document propose un exercice similaire mais sur

l"oscillateur harmonique. Ceci n"a pas été vu en classe, mais est lié à la matière du cours.

Séance d"exercices 1: États liés du puits carré.

PUITS CARRÉ INFINI EN 1 DIMENSION

Exercice a

Notez d"abord que le puits étant infini, il n"admet que des états liés!

À l"extérieur du puits, le potentiel étant infini, la fonction d"onde est nulle. Comme la fonction d"onde

doit être continue, on en déduit les conditions limites de la fonction d"onde à l"intérieur du puits :

(0) = (L) = 0 indépendante du temps, en une dimension, qui est donnée par : ~22m@ 2@x

2+V(x)

(x) =E (x) Comme le potentiel est nul, cela devient simplement ~22m@ 2@x

2 (x) =E (x)

ou encore, en posantk=p2mE=~, @2@x

2 (x) =k2 (x):

La solution de cette équation différentielle est donnée par des sinus et cosinus. Ainsi, de façon générale,

la solution est (x) =Asin(kx) +Bcos(kx): En utilisant les conditions limites mentionnées précédemment, on trouve (0) = 0)B= 0 (L) = 0)Asin(kL) = 0)kL=n oùnest un entier positif. Ainsi, (x) =Asin nxL 1 Pour trouver la valeur deAil reste à normaliser la fonction : Z L 0 j (x)j2dx=A2ZL 0 sin nxL dx =A2LZ 1 0 sin2(ny)dyoù on a poséy=x=L =A2LZ 1

01cos(2ny)2

dy =A2Ly2 sin(2ny)4n 1 0 =A2L2 Puisque la norme de la fonction d"onde vaut1on trouve queA=p2=Let donc n(x) =8 :q2 L sin n xL si0xL

0sinon

Notez quenreprésente ici le nombre quantique.

Exercice b

Puisque, de l"exercice précédent on tire quek=p2mE=~etkL=n, on en déduit facilement que les énergies propres du puits infini sont E n=k2~22m=n22~22mL2 . Puisquenest entier, on comprend ici que l"énergie est quantifiée.

Remarquez que si le puits carré est de profondeur finieV0, on a une solution (x)non nulle à l"extérieur

du puits, comme on le verra à l"exercice 3. Dans ce cas là, il y aura également un nombre fini d"états

liés.

PUITS CARRÉ INFINI EN 3 DIMENSIONS

Exercice a

~22m @2@x

2+ +@2@y

2+@2@z

2 +V(3)(x;y;z) (x;y;z) =E (x;y;z) En supposant que la solution a la forme (x;y;z) = 1(x) 2(y) 3(z), on trouve

2(y) 3(z)

~22m@

2 1(x)@x

2+V1(x) 1(x)

+ 1(x) 3(z) ~22m@

2 2(y)@y

2+V2(y) 2(y)

+ 1(x) 2(y) ~22m@

2 3(z)@z

2+V3(z) 3(z)

= 2(y) 3(z)(E1 1(x)) + 1(x) 3(z)(E2 2(y)) + 1(x) 2(y)(E3 3(z)) 2

où on a posé queE=E1+E2+E3. On a donc 3 fois un problème unidimensionnel qui se ramène en

fait au cas étudié à l"exercice1:~22m@ 2@x

2i+Vi(xi)

i(xi) =Ei i(xi) pour i=1,2,3. La solution générale dépend alors de trois nombres quantiquesn1,n2etn3: n1;n2;n3(x;y;z) =r8 L

1L2L3sin

n 1xL 1 sin n 2xL 2 sin n 3xL 3

Exercice b

En se basant également sur le résultat de l"exercice1, on trouve que les énergies liées sont :

E n1;n2;n3=2~22m n21L

21+n22L

22+n23L

23
Remarquez que dans ce cas-là, certaines dégénérescences sont possibles.

Exercice c

Ici, on cherche à calculer le nombre d"états quantiqueN(E0)dans la boîte dont l"énergie est inférieure

à une certaine valeurE0. On cherche doncN(E0)tel que n 21L

21+n22L

22+n23L

232mE0

2~2

On remarque que c"est comme calculer le nombre d"états à l"intérieur d"une sphère de rayon

R=p2mE0~

en sachant que la densité de points estL1L2L3(l"unité de longueur de la coordonnéeiestni=Li).

On approxime le résultat en oubliant que lesnisont entiers et donc il suffit de calculer le volume de

la sphère multiplié par sa densité. Par contre, il ne faut pas oublier que lesnine peuvent être que

positifs et donc on ne prend qu"un huitième du volume de la sphère. :

N(E0)18

volumedensité 18 43
(2mE0)3=2

3~3L1L2L3

43
p30L1L2L3h 3

où à la dernière ligne on a posé que~=h2etp0=p2mE0.p0représente l"impulsion d"une particule

de massemdont l"énergie cinétique estE0.

Ainsi, on remarque dans la dernière équation queL1L2L3représente le volume dans l"espace des

positions alors que4p30=3représente le volume dans l"espace des impulsions.

Dans une volume arbitraire de l"espace des phases, le nombre d"états quantiques indépendants est en

fait donné par

Nxyzpxpypzh

3 C"est comme si chaque état se trouvait dans une petit boîte de côtéh.

Lorsqu"il s"agit de fermions, cela revient simplement à compter le nombre de particules dans la boîte

jusqu"à une certaine énergie, puisqu"il n"y a qu"une seule particule par niveau (on ne peut pas mettre

plus d"un fermion par petite boîte). Notez également que l"on ne connaît par précisémentxetpà

l"intérieur de la petite boîte. 3

PUITS CARRÉ FINI EN 3 DIMENSIONS

Exercice a

H =E ,

~22mr2+V(r) (r) =E (r) où le laplacien en coordonnées sphérique est r 2=1r 2@@r r2@@r +1r 2

1sin@@

sin@@ +1sin 2@ 2@ 2! ~22mr2@@r r2@@r ~22mr2

1sin@@

sin@@ +1sin 2@ 2@ 2! +V(r)# (r;;) =E (r;;) En multipliant l"équation par2mr2, on peut rendre l"équation séparable : ~2@@r r2@@r ~2

1sin@@

sin@@ +1sin 2@ 2@ 2! + 2mr2V(r)# (r;;) = 2mr2E (r;;) ou encore ~2@@r r2@@r + 2mr2V(r)E# |{z} partie radiale (r;;) =~2

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;)

Exercice b

[energie] =[p2][2m]=[(~=longueur)2][2m]=~22ma2 où on utilise le fait quexp~pour trouver que l"unité depest celle de~=longueur. Notez qu"on veut rendrerégalement sans dimension. Pour ceci on définit une variabler0=r=aqui est sans dimension. Alors, @@r

0=a@@r

et@@r

0r02@@r

0=@@r r2@@r ~2@@r 0 r 02@@r 0 +2ma2r02V(r0)E# (r0;;) =~2

1sin@@

sin@@ +1sin 2@ 2@ 2! (r0;;) ou encore (en renommant r"=r) @@r r2@@r +2ma2~ 2 r

2V(r)E#

|{z} partie radiale (r;;) =

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;) @@r r2@@r +r2V(r)E# |{z} partie radiale (r;;) =

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;) 4

Exercice c

Posons (r;;) =r1ul(r)Yml(

@@r r2@@r +r2V(r)E# r

1ul(r)Yml(

1sin@@

sin@@ +1sinquotesdbs_dbs1.pdfusesText_1