[PDF] [PDF] Les fonctions sinus et cosinus - Lycée dAdultes

26 jui 2013 · Définition 3 : On appelle fonctions sinus et cosinus les fonctions respectives : La fonction cosinus est paire : ∀x ∈ R cos(−x) = cos x



Previous PDF Next PDF





[PDF] FONCTIONS COSINUS ET SINUS - maths et tiques

Le cosinus du nombre réel x est l'abscisse de M et on note cos x - Le sinus du 2) Valeurs remarquables des fonctions sinus et cosinus : x 0 π 6 π 4 π 3 π 2



[PDF] Trigonométrie : le cosinus

Trigonométrie : le cosinus I Rappels 1/ Vocabulaire des triangles rectangles Définition Un triangle rectangle est un triangle qui possède un angle droit



[PDF] Chapitre 6 : « Trigonométrie : le cosinus »

Définition Dans un triangle rectangle, le cosinus d'un angle aigu est égal au quotient du côté par l'hypoténuse On note cos La valeur du cosinus d'un 



[PDF] Première S - Cosinus et sinus dun nombre réel - Parfenoff

Définition : Les coordonnées du point M sont : (cos ; sin ) Les cosinus de noté cos est l'abscisse du point M



[PDF] Les fonctions sinus et cosinus - Lycée dAdultes

26 jui 2013 · Définition 3 : On appelle fonctions sinus et cosinus les fonctions respectives : La fonction cosinus est paire : ∀x ∈ R cos(−x) = cos x



[PDF] Chapitre 11 Fonctions sinus et cosinus - Maths-francefr

a est un réel de l'intervalle π 2 ,π dont le sinus est égal à 3 5 Calculer son cosinus Solution cos2(a) = 1 − sin2(a) = 1 − 35 2



[PDF] Table trigonométrique (de cosinus)

Table trigonométrique (de cosinus) angles (◦ ) cosinus 0, 0◦ 1, 000000 0, 5◦ 0, 999962 1, 0◦ 0, 999848 1, 5◦ 0, 999657 2, 0◦ 0, 999391 2, 5◦



[PDF] Cours de trigonométrie (troisième) - Automaths

Dans un triangle ABC rectangle en A, on définit le sinus, le cosinus et la tangente de l'angle aigu ABC de la manière suivante : sin ABC = coté opposé à ABC



[PDF] cos²x + sin²x = 1 tan x = sin x cos x - MATHS EN LIGNE

les relations entre le cosinus, le sinus ou la tangente d'un angle aigu et les longueurs de deux côtés du triangle Utiliser la calculatrice pour déterminer des



[PDF] TRIGONOMETRIE I Cosinus, sinus et tangente dun angle aigu 1

1) Définition du cosinus Dans un triangle rectangle, le cosinus d'un angle aigu est égal au quotient de la longueur du côté adjacent à cet angle par la longueur 

[PDF] cosinus pi

[PDF] angles consécutifs def

[PDF] dans un parallélogramme deux angles consécutifs sont supplémentaires

[PDF] angles consecutifs dans un parallelogramme

[PDF] coté consécutif d'un quadrilatère

[PDF] somme des angles d'un parallélogramme

[PDF] cours sur les triangles pdf

[PDF] cours sur les triangles 5ème

[PDF] coté adjacent définition

[PDF] calcul hypoténuse triangle rectangle avec angle

[PDF] coté adjacent d'un angle

[PDF] calcul icc excel

[PDF] logiciel calcul pouvoir de coupure

[PDF] courant de court circuit ik3

[PDF] icc transfo 630 kva

DERNIÈRE IMPRESSION LE26 juin 2013 à 15:06

Les fonctions sinus et cosinus

Table des matières

1 Rappels2

1.1 Mesure principale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Résolution d"équations. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Signe des lignes trigonométriques. . . . . . . . . . . . . . . . . . . 3

2 Fonctions sinus et cosinus3

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Parité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Périodicité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 De sinus à cosinus. . . . . . . . . . . . . . . . . . . . . . . . 4

3 Étude des fonctions sinus et cosinus4

3.1 Dérivées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Application aux calculs de limites. . . . . . . . . . . . . . . . . . . . 5

3.3 Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4 Courbes représentatives. . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5 Compléments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Application aux ondes progressives6

4.1 Onde sonore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Harmoniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

PAULMILAN1 TERMINALES

1 RAPPELS

1 Rappels

1.1 Mesure principale

Définition 1 :On appelle mesure principale d"un angleα, la mesurexqui se trouve dans l"intervalle]-π;π] Exemple :Trouver la mesure principale des angles dont les mesures sont :

17π

4et-31π6

kde tours (2π) pour obtenir la mesure principale :

17π

4-k2π=π(17-8k)4=π4aveck=2

•-31π6est une mesure trop petite(?-π), il faut donc lui rajouter un certain nombrekde tours (2π) pour obtenir la mesure princimale :

31π

6+k2π=π(-31+12k)6=5π6aveck=3

1.2 Résolution d"équations

Théorème 1 :Équations trigonométriques •L"équation cosx=cosaadmet les solutions suivantes surR: x=a+k2πoux=-a+k2πaveck?Z •L"équation sinx=sinaadmet les solutions suivantes surR: x=a+k2πoux=π-a+k2πaveck?Z Exemple :Résoudre dansRles équations suivantes : a)⎷

2cosx-1=0 b) 2sinx-⎷3=0

On obtient les solutions :x=π

4+k2πoux=-π4+k2πaveck?Z

b) 2sinx-⎷

3=0?sinx=⎷3

2?sinx=sinπ3

On obtient les solutions :

x=π

PAULMILAN2 TERMINALES

1.3 SIGNE DES LIGNES TRIGONOMÉTRIQUES

1.3 Signe des lignes trigonométriques

Théorème 2 :On a sur]-π;π],

sinx>0?x?]0 ;π[ cosx>0?x??

2;π2?

O0π

2 2π sinx>0 cosx>0

2 Fonctions sinus et cosinus

2.1 Définition

Définition 2 :À tout réelx, on as-

socie un point unique M du cercle unité ou cercle trigonométrique de centre O, dont les coordonnées sont :

M(cosx; sinx)

sinx cosx xM O Définition 3 :On appelle fonctions sinus et cosinus les fonctions respectives : x?→sinxetx?→cosx

Remarque :?x?R-1?sinx?1 et-1?cosx?1

2.2 Propriétés

2.2.1 Parité

Théorème 3 :D"après les formules de trigonométrie, •La fonction sinus est impaire :?x?Rsin(-x) =-sinx •La fonction cosinus est paire :?x?Rcos(-x) =cosx ConséquenceLa courbe représentative de la fonction sinus est symétrique par rapport à l"origine, et la courbe représentative de la fonction cosinus est symé- trique par rapport à l"axe des ordonnées.

PAULMILAN3 TERMINALES

3 ÉTUDE DES FONCTIONS SINUS ET COSINUS

2.2.2 Périodicité

Théorème 4 :D"après la définition des lignes trigonométriques dans le cercle, les fonctions sinus et cosinus sont 2πpériodiques :T=2π ?x?Rsin(x+2π) =sinxet cos(x+2π) =cosx ConséquenceOn étudiera les fonctions sinus et cosinus sur un intervalle de 2π, par exemple]-π;π].

2.2.3 De sinus à cosinus

Théorème 5 :D"après les formules de trigonométrie, on a : sin 2-x? =cosxet cos?π2-x? =sinx Exemple :Résoudre dans l"intervalle]-π;π], l"équation suivante : sin x+π 4? =cosx On transforme par exemple le cosinus en sinus, l"équation devientalors : sin? x+π 4? =sin?π2-x? DansR, on trouve les solutions suivantes :x+π

4=π2-x+k2π

x+π

4=π-?π2-x?

+k2π?2x=π

4+k2π

0x=π-π

2-π4+k2π

La deuxième série de solutions étant impossible, on trouve alors dansR x=π

8+kπ

Dans l"intervalle]-π;π], on prendk=-1 etk=0 , soit les solutions x=-7π

8oux=π8

3 Étude des fonctions sinus et cosinus

3.1 Dérivées

Théorème 6 :Les fonctions sinus et cosinus sont dérivables surR: sin ?x=cosxet cos?x=-sinx

Remarque :On admettra ces résultats.

PAULMILAN4 TERMINALES

3.2 APPLICATION AUX CALCULS DE LIMITES

Exemple :Déterminer la dérivée de la fonction suivante : f(x) =cos2x+cos2x La fonctionfest dérivable surRcar composée et produit de fonctions dérivables surR f ?(x) =-2sin2x-2sinxcosx =-2sin2x-sin2x =-3sin2x

3.2 Application aux calculs de limites

Théorème 7 :D"après les fonctions dérivées des fonctions sinus et cosinus, on a :quotesdbs_dbs2.pdfusesText_3