[PDF] [PDF] Série géométrique

Le fait de calculer la somme d'une série à partir de k = 0 est purement Dans le théorème 10, rien n'oblige à démarrer de 0 : pour m ∈ , la série ∑k李m f (k) et 



Previous PDF Next PDF





[PDF] CALCUL INTEGRAL ET SERIES

7 2 Fonctions définies par la somme d'une série de fonctions fonction f dont on cherche `a calculer une primitive peut être mise sous la forme f = (g ◦u)×u , o` u u est une Mais le théor`eme ne dit rien sur ce qui se passe sur le cercle :



[PDF] Séries entières

Le calcul de la somme de la série géométrique est facile, grâce à l'expression explicite des sommes Comment obtenir une expression explicite de an ?



[PDF] Série géométrique

Le fait de calculer la somme d'une série à partir de k = 0 est purement Dans le théorème 10, rien n'oblige à démarrer de 0 : pour m ∈ , la série ∑k李m f (k) et 



[PDF] Les chapitres sur lintégrale de Riemann et les techniques d

Pour la convergence de la somme de Riemann, l'argument est aussi le même Nous allons voir comment calculer une primitive du log Pour cela, nous allons 



[PDF] SERIES NUMERIQUES

, å ' È , n ≥ 0 Si elle converge, calculer sa somme Exercice 6 Soit ß une permutation de ˙* Montrer, en utilisant le "paquet de Cauchy" ∑ k 



[PDF] Intégrale de Riemann - Université de Rennes 1

1 sept 2020 · probl`emes d'interversion de somme et d'intégration (soulevés par Fourier) : ∑ n ≥1 intégrabilité : avec ε = 1/2, comment trouver une subdivision S telle que 1 = 1 − 0 = A+(f,S) [AF] Jean-Marie Arnaudi`es, Henri Fraysse



[PDF] Sommaire 1 Convergence des Séries Numériques - Christophe

Calcul Exact de Sommes de Séries 8 6 1 Définition : On dit que la série de terme général un, converge ⇔ la suite des sommes partielles (sn)n∈N converge



[PDF] Chapitre 5 Séries trigonométriques

ries trigonométriques La propriété Exercice Trouver la somme de la série trigonométrique de terme général ncos(n x) 2n alors les relations ci-dessus donnent une idée de comment calculer les coefficients an et bn (« sous de bonnes 



[PDF] Séries numériques

La règle de D'Alembert permet-elle de caractériser les séries de Riemann convergentes ? 10 Comment trouver un ordre de grandeur des sommes partielles de la 



[PDF] Intégrale de Riemann - Département de Mathématiques dOrsay

fait rien d'évident, puisqu'a priori, aucune règle, aucune formule, aucune Comment définir l'intégrale d'une fonction réelle f : R -→ R quelconque ? Pour calculer les sommes de Darboux inférieure et supérieure de f associées à ∆, comme

[PDF] somme double i/j

[PDF] garam

[PDF] exercice corrigé rdm portique

[PDF] calcul des structures hyperstatiques pdf

[PDF] exercice rdm poutre corrigé

[PDF] exercice portique hyperstatique

[PDF] exercices corrigés rdm charges réparties

[PDF] exercice corrigé portique hyperstatique

[PDF] exercice corrigé poutre hyperstatique

[PDF] calcul de structure cours

[PDF] exercice corrigé portique isostatique

[PDF] methode des forces exercices corrigés pdf

[PDF] portique hyperstatique corrigé

[PDF] théorème des trois moments exercices corrigés

[PDF] structure hyperstatique méthode des forces

SériesDans ce chapitre nous allons nous intéresser à des sommes ayant une infinité de termes. Par exemple que peut bien

valoir la somme infinie suivante : 1+12 +14 +18 +116
+=?2 11 21
4

Cette question a été popularisée sous le nom duparadoxe de Zénon. On tire une flèche à2mètres d"une cible. Elle

met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du

temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance

encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n"atteint jamais

sa cible! Zénon ne concevait pas qu"une infinité de distances finies puisse être parcourue en un temps fini. Et pourtant

nous allons voir dans ce chapitre que la somme d"une infinité de termes peut être une valeur finie.

1. Définitions - Série géométrique

1.1. DéfinitionsDéfinition 1.

Soit(uk)k>0une suite de nombres réels (ou de nombres complexes). On pose S n=u0+u1+u2++un=n X k=0u k. La suite(Sn)n>0s"appelle lasériede terme généraluk.

Cette série est notée par la somme infinieX

k>0u k. La suite(Sn)s"appelle aussi lasuite des sommes partielles.Exemple 1.

Fixonsq2C. Définissons la suite(uk)k>0paruk=qk; c"est une suite géométrique. Lasérie géométriqueX

k>0q kest la suite des sommes partielles : S

0=1S1=1+q S2=1+q+q2...Sn=1+q+q2++qn...Définition 2.

SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE2Si la suite(Sn)n>0admet une limite finie dansR(ou dansC), on note

S=+1X k=0u k=limn!+1Sn.On appelle alorsS=P+1 k=0uklasommede la sérieP k>0uk, et on dit que la série estconvergente. Sinon, on dit

qu"elle estdivergente.Notations.On peut noter une série de différentes façons, et bien sûr avec différents symboles pour l"indice :

+1X i=0u iX n2Nu nP k>0ukX u k. Pour notre part, on fera la distinction entre une série quelconque X k>0u k , et on réservera la notation +1X k=0u k

à une série

convergente ou à sa somme.

1.2. Série géométriqueProposition 1.

Soit q2C. La série géométriqueP

k>0qkest convergente si et seulement sijqj<1. On a alors+1X k=0q S n=1+q+q2+q3++qn. Écartons tout de suite le casq=1, pour lequelSn=n+1. Dans ce casSn!+1, et la série diverge.

Soitq6=1 et multiplionsSnpar 1q:

(1q)Sn= (1+q+q2+q3++qn)(q+q2+q3++qn+1) =1qn+1 DoncS n=1qn+11qSijqj<1, alorsqn!0, doncqn+1!0 et ainsiSn!11q. Dans ce cas la sérieP k>0qkconverge.

Sijqj>1, alors la suite(qn)n"a pas de limite finie (elle peut tendre vers+1, par exemple siq=2; ou bien être

divergente, par exemple siq=1). Donc sijqj>1,(Sn)n"a pas de limite finie, donc la sérieP k>0qkdiverge.Exemple 2.1.

Série géométrique de raisonq=12:

+1X k=012 k =1112=2. Cela résout le paradoxe de Zénon : la flèche arrive bien jusqu"au mur! 2. Série géométrique de raisonq=13, avec premier terme13

3. On se ramène à la série géométrique commençant à

k=0en ajoutant et retranchant les premiers termes : +1X k=313 k +1X k=013 k 113
13

2=1113

139=32

139=118.

3.Le fait de calculer la somme d"une série à partir dek=0est purement conventionnel. On peut toujours effectuer

un changement d"indice pour se ramener à une somme à partir de0. Une autre façon pour calculer la même série

+1X k=313 kque précédemment est de faire le changement d"indicen=k3 (et donck=n+3) : +1X k=313 k=+1X n=013 n+3=+1X n=013 313
n=13 3+1X n=013 n=127 1113
=118 4. +1X 2k =+1X 14 k =1114 =45 SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE3

1.3. Séries convergentesLa convergence d"une série ne dépend pas de ses premiers termes : changer un nombre fini de termes d"une série

ne change pas sa nature, convergente ou divergente. Par contre, si elle est convergente, sa somme est évidemment

modifiée.

Une façon pratique d"étudier la convergence d"une série est d"étudier son reste : lereste d"ordrend"une série

convergenteP+1 k=0ukest : R n=un+1+un+2+=+1X k=n+1u kProposition 2. Si une série est convergente, alors S=Sn+Rn(pour tout n>0) etlimn!+1Rn=0.Démonstration. •S=P+1 k=0uk=Pn k=0uk+P+1 k=n+1uk=Sn+Rn. DoncRn=SSn!SS=0 lorsquen!+1.1.4. Suites et séries

Il n"y a pas de différence entre l"étude des suites et des séries. On passe de l"une à l"autre très facilement.

Tout d"abord rappelons qu"à une sérieP

k>0uk, on associe la somme partielleSn=Pn k=0uket que par définition la série est convergente si la suite(Sn)n>0converge.

Réciproquement si on veut étudier une suite(ak)k>0on peut utiliser le résultat suivant :Proposition 3.

Unesomme télescopiqueest une série de la formeX k>0(ak+1ak). Cette série est convergente si et seulement si`:=limk!+1akexiste et dans ce cas on a : +1X k=0(ak+1ak) =`a0.Démonstration. S n=n X k=0(ak+1ak) = (a1a0)+(a2a1)+(a3a2)++(an+1an) =a0+a1a1+a2a2++anan+an+1 =an+1a0Voici un exemple très important pour la suite.

Exemple 3.

La série

+1X k=01(k+1)(k+2)=112+123+134+

est convergente et a la valeur1. En effet, elle peut être écrite comme somme télescopique, et plus précisément la

somme partielle vérifie : S n=n X k=01(k+1)(k+2)=n X

1k+11k+2‹

=11n+2!1 lorsquen!+1 Par changement d"indice, on a aussi que les sériesP+1 k=11k(k+1)etP+1 k=21k(k1)sont convergentes et de même somme1. SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE4

1.5. Le terme d"une série convergente tend vers0Théorème 1.

Si la sérieP

k>0ukconverge, alors la suite des termes généraux(uk)k>0tend vers0.Le point clé est que l"on retrouve le terme général à partir des sommes partielles par la formule

u n=SnSn1.

Démonstration.Pour toutn>0, posonsSn=Pn

k=0uk. Pour toutn>1,un=SnSn1. SiP k>0ukconverge, la suite

(Sn)n>0converge vers la sommeSde la série. Il en est de même de la suite(Sn1)n>1. Par linéarité de la limite, la

suite(un)tend versSS=0.La contraposée de ce résultat est souvent utilisée : Une série dont le terme général ne tend pas vers 0 ne peut pas converger.

Par exemple les séries

P k>1(1+1k )etP k>1k2sont divergentes. Plus intéressant, la sériePukde terme général u k=1 sik=2`pour un certain`>0

0 sinon

diverge. En effet, même si les termes valant 1 sont très rares, il y en a quand même une infinité!

1.6. LinéaritéProposition 4.

SoientP+1

k=0aketP+1 k=0bkdeux séries convergentes de sommes respectivesAetB, et soient,2R(ouC). Alors la sérieP+1 k=0(ak+bk)est convergente et de sommeA+B. On a donc +1X k=0(ak+bk) =+1X k=0a k++1X k=0b k.Démonstration.A n =Pn k=0ak!A2C,Bn=Pn k=0bk!B2C. DoncPn k=0(ak+bk) =Pn k=0ak+Pn k=0bk=

An+Bn!A+B.Par exemple :

+1X 12 k+53 k‹ =+1X k=012 k+5+1X k=013 k=1112 +51113
=2+532 =192

Comme application pour les séries à termes complexes, la convergence équivaut à celle des parties réelle et imaginaire :Proposition 5.

Soit(uk)k>0une suite de nombres complexes. Pour toutk, notonsuk=ak+ibk, avecakla partie réelle deuketbkla

partie imaginaire. La sériePukconverge si et seulement si les deux sériesPaketPbkconvergent. Si c"est le cas, on

a : +1X k=0u k=+1X k=0a k+i+1X k=0b k.Exemple 4. Considérons par exemple la série géométriqueP k>0rk, oùr=eiest un complexe de module <1et d"argument Comme le module derest strictement inférieur à 1, alors la série converge et +1X k=0r k=11r. SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE5 D"autre part,rk=keikpar la formule de Moivre. Les parties réelle et imaginaire derksont a k=kcos(k)etbk=ksin(k). On déduit de la proposition précédente que : +1X k=0a k=Re‚ +1X k=0r kŒ et+1X k=0b k=Im‚ +1X k=0r kŒ

Le calcul donne :

+1X k=0 kcos(k) =1cos1+22coset+1X k=0 ksin(k) =sin1+22cos.

1.7. Sommes de sériesPour l"instant, il n"y a pas beaucoup de séries dont vous connaissez la somme, à part les séries géométriques. Il faudra

attendre d"autres chapitres et d"autres techniques pour calculer des sommes de séries. Dans ce chapitre on s"intéressera

essentiellement à savoir si une série converge ou diverge.

Voici cependant une exception!

Exemple 5.

Soitq2Ctel quejqj<1. Que vaut la somme

+1X k=0kq k? Admettons un moment que cette série converge et notonsS=P+1 k=0kqk.

Écrivons :

S=+1X k=0kq k=+1X k=1kq k=q+1X k=1kq k1 =q+1X k=1q k1+q+1X k=1(k1)qk1 =q+1X k=1q k1+q+1X k 0=0k

0qk0en posantk0=k1

=q+1X k=1q k1+qS En résolvant cette équation enS, on trouve que (1q)S=q+1X k=1q k1.

Cette dernière série est une série géométrique de raisonqavecjqj<1donc converge. Cela justifie la convergence de

S. Ainsi (1q)S=q11q.

Conclusion :

S=+1X k=0kqquotesdbs_dbs22.pdfusesText_28