[PDF] [PDF] Logique, ensembles et applications - Exo7 - Exercices de

Déterminer une relation de récurrence permettant de calculer les Sp de proche en proche Correction ▽ [005109] Exercice 8 *IT Montrer que : (g◦ f injective 



Previous PDF Next PDF





[PDF] ALGÈBRE Cours et Exercices Première Année LMD - USTO

2 Ensembles et Applications 3 1 1 Propriétés des relations binaires dans un en - La partie entrainement comprend des exercices qui ont été NOTIONS DE LOGIQUE MATHÉMATIQUE Corrigés Corrigé 1 5 1 (1) (n = 2) ∧ (n pair) ⇒ n 



[PDF] ENSEMBLES, RELATIONS, APPLICATIONS Exercice 2

FEUILLE N◦ 1 : ENSEMBLES, RELATIONS, APPLICATIONS Dans les trois premiers exercices, on considère un ensemble E et A,B,C ∈ P(E) Exercice 1



[PDF] Correction des exercices-Chapitre 8-Ensembles, applications

Correction des exercices-Chapitre 8-Ensembles, applications, relation d' équivalence ♢ Eléments de correction en ligne 1 1 On procède par double implication 



[PDF] Ensembles et applications - Normale Sup

Pour les trois exercices suivants, on rappelle que deux ensembles A et B sont dits en bijection s'il existe une application bijective entre A et B Exercice 8 Soient A 



[PDF] Pascal Lainé Ensembles-Applications Exercice 1 - Licence de

est une application (i) bijective (ii) injective et pas surjective (iii) surjective et pas injective (iv) ni surjective ni injective Justifier 3 Soit ∈ ℕ ∖ {0,1}



[PDF] Planche no 3 Ensembles, relations, applications : corrigé

Ensembles, relations, applications : corrigé Exercice no 1 Si E = F, alors 乡(E) Finalement, la relation 勿 est réflexive, symétrique et transitive Par suite, la 



[PDF] Logique, ensembles et applications - Exo7 - Exercices de

Déterminer une relation de récurrence permettant de calculer les Sp de proche en proche Correction ▽ [005109] Exercice 8 *IT Montrer que : (g◦ f injective 



[PDF] Applications, relations Exercices chapitre 8 Méthodes et savoir-faire

En déduire une expression de la fonction indicatrice de A ∪B à l'aide des fonctions indicatrices de A et de B 5 Soit f une fonction définie sur un ensemble E à 



[PDF] Exercices de

Exercice 3 1 Soient E et F des ensembles, f une application de E dans F, A une partie de Exercice 4 4 On considère sur N N la relation binaire P donnée par :



[PDF] volume 1 - Walanta

Daniel ALIBERT cours et exercices corrigés volume 1 1 Daniel ALIBERT Ensembles, applications Relations d'équivalence Lois de composition (groupes )

[PDF] exercices corrigés enthalpie libre et potentiel chimique

[PDF] exercices corriges equilibre d'un solide mobile autour d'un axe fixe

[PDF] exercices corrigés et commentés de biologie moléculaire pdf

[PDF] exercices corrigés fiabilité des systèmes

[PDF] exercices corrigés finance de marché

[PDF] exercices corrigés firewall

[PDF] exercices corrigés fonctions numériques terminale s

[PDF] exercices corrigés fonctions numériques terminale s pdf

[PDF] exercices corrigés forces de frottement

[PDF] exercices corriges genetique des haploides

[PDF] exercices corrigés génétique dihybridisme

[PDF] exercices corrigés génétique humaine

[PDF] exercices corrigés géométrie affine mpsi

[PDF] exercices corrigés géométrie dans l'espace terminale s

[PDF] exercices corrigés gestion de projet pdf

Exo7

Logique, ensembles et applications

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1**ITExprimer à l"aide de quantificateurs les phrases suivantes puis donner leur négation.

1. ( fétant une application du plan dans lui-même) (a)fest l"identité du plan. (b)fa au moins un point invariant (on dit aussi point fixe). 2. ( fétant une application deRdansR) (a)fest l"application nulle. (b)

L "équationf(x) =0 a une solution.

(c)

L "équationf(x) =0 a exactement une solution.

3. ( (un)n2Nétant une suite réelle) (a)

La suite (un)n2Nest bornée.

(b)

La suite (un)n2Nest croissante.

(c)

La suite (un)n2Nest monotone.

1.x>3 2.

0

1.8x2R;(f(x) =0 etg(x) =0)et(8x2R;f(x) =0)et(8x2R;g(x) =0).

2.8x2R;(f(x) =0 oug(x) =0)et(8x2R;f(x) =0)ou(8x2R;g(x) =0).

Donner un exemple de fonctionsfetgdeRdansR, toutes deux non nulles et dont le produit est nul. préciserf1: 1

1.f(x) =x24x+3,I=]¥;2].

2.f(x) =2x1x+2,I=]2;+¥[.

3.f(x) =p2x+31,I=32

4.f(x) =x1+jxj,I=R.

C=Re(z)<0g. Préciserf1.

directe. . En calculant la différence (k+1)2k2, trouver une démonstration directe de ce résultat. 2.

Calculer de même les sommes

ånk=1k2,ånk=1k3etånk=1k4(et mémoriser les résultats). 3.

On pose Sp=ånk=1kp. Déterminer une relation de récurrence permettant de calculer lesSpde proche en

proche.

1.(ADB=A\B),(A=B=?).

2.(A[B)\(B[C)\(C[A) = (A\B)[(B\C)[(C\A).

3.ADB=BDA.

4.(ADB)DC=AD(BDC).

5.ADB=?,A=B.

6.ADC=BDC,A=B.

2

d"un ensembleFindéxée par un ensembleI. Soitfune application deEversF. Comparer du point de vue de

l"inclusion les parties suivantes : 1.f(S i2IAi)etS i2If(Ai)(recommencer parf(A[B)si on n"a pas les idées claires). 2.f(T i2IAi)etT i2If(Ai).

3.f(EnAi)etFnf(Ai).

4.f1(T

i2IBi)etT i2If1(Bi).

5.f1(S

i2IBi)etS i2If1(Bi).

6.f1(FnBi)etEnf1(Bi).

1.fest injective.

2.8X2P(E);f1(f(X)) =X.

3.8(X;Y)2P(E)2;f(X\Y) =f(X)\f(Y).

4.8(X;Y)2P(E)2;X\Y=?)f(X)\f(Y) =?.

5.8(X;Y)2P(E)2;YX)f(XnY) =f(X)nf(Y).

par n(n+1)2 . Montrer que, pourn>2,Hnn"est jamais un entier (indication : montrer par

récurrence queHnest le quotient d"un entier impair par un entier pair en distingant les cas oùnest pair etnest

impair). 2. En considérant la partie A=fx2E=x=2f(x)g, montrer qu"il n"existe pas de bijectionfdeEsurP(E).

Soitf:N2!N

(x;y)7!y+(x+y)(x+y+1)2 . Montrer quefest une bijection. Préciser, pourn2Ndonné, le couple (x;y)dont il est l"image. Correction del"exer cice1 N1.(a) (f=IdP, 8M2P;f(M) =M)et(f6=IdP, 9M2P=f(M)6=M). (b)(fa au moins un point fixe,9M2P=f(M)=M)et(fn"a pas de point fixe,8M2P;f(M)6= M). Constatez que les phrasesf(M) =Mouf(M)6=Mn"ont aucun senssi elles ne sont pas accompagnées de quantificateurs. 2. (a) (f=0, 8x2R;f(x) =0)et(f6=0, 9x2R=f(x)6=0). (b) (L "équationf(x) =0 a (au moins) une solution si et seulement si9x2R=f(x) =0)et (l"équation f(x) =0 n"a pas de solution si et seulement si8x2R=f(x)6=0). (c) (L "équationf(x) =0 a exactement une solution si et seulement si9!x2R=f(x) =0)et (l"équation f(x)=0 n"a pas exactement une solution si et seulement si8x2R=f(x)6=0 ou9(x;x0)2R2=(x6= x

0etf(x) =f(x0) =0).

3. (a) ((un)n2Nbornée,9M2R=8n2N;junj6M)et((un)n2Nnon bornée,8M2R=9n2N;junj> M). (b)((un)n2Ncroissante, 8n2N=un+1>un)et((un)n2Nnon croissante, 9n2N=un+1un)ou(8n2N=un+16un))et((un)n2Nnon monotone,

((9n2N=un+1un)).Correction del"exer cice2 NLe contraire dex>3 estx<3. Le contraire de 02).Correction del"exer cice3 N1.Oui. Dans les deux cas, chaque fois que l"on se donne un réel x0,f(x0)etg(x0)sont tous deux nuls.

2.

Non. La deuxième af firmationimplique la première mais la première n"implique pas la deuxième. La

première phrase est la traduction avec des quantificateurs de l"égalitéfg=0. La deuxième phrase est la

traduction avec quantificateurs de(f=0oug=0). Voici un exemple de fonctionsfetgtoutes deux non nulles dont le produit est nul. Soientf:R!R x7!0 six<0 xsix>0etg:R!R x7!0 six>0 xsix60. Pour chaque valeur dex, on a soitf(x) =0 (quandx60), soitg(x) =0 (quandx>0). On a donc :8x2 R;(f(x) =0 oug(x) =0)ou encore8x2R;f(x)g(x) =0 ou enfin,fg=0. Cependant,f(1) =16=0 et doncf6=0, etg(1) =16=0 et doncg6=0. Ainsi, on n"a pas(f=0 oug=0)ou encore, on n"a pas

((8x2R;f(x) =0)ou(8x2R;g(x) =0)).Correction del"exer cice4 N1.fest dérivable surI=]¥;2], et pourx2]¥;2[,f0(x)=2x4<0.fest donc continue et strictement

décroissante sur]¥;2]. Par suite,fréalise une bijection de]¥;2]surf(]¥;2]) = [f(2);lim¥f[=

[1;+¥[=J. On notegl"application deIdansJqui, àxassociex24x+3(=f(x)).gest bijective et admet donc une réciproque. Déterminonsg1. Soity2[1;+¥[etx2]¥;2]. y=g(x),y=x24x+3,x24x+3y=0: Or,D0=4(3y) =y+1>0. Donc,x=2+py+1 oux=2py+1. Enfin,x2]¥;2]et donc, x=2py+1. En résumé, 5

8x2]¥;2];8y2[1;+¥[;y=g(x),x=2py+1:

On vient de trouverg1:

8x2[1;+¥[;g1(x) =2px+1.2.On vérifie f acilementque fréalise une bijection de]2;+¥[sur]¥;2[, notéeg. Soient alorsx2

]2;+¥[ety2]¥;2[. y=g(x),y=2x1x+2,x(y+2) =2y+1,x=2y+1y+2:

(on a ainsi trouvé au plus une valeur pourxà savoirx=2y+1y+2, mais il n"est pas nécessaire de vérifier que

cette expression est bien définie et élément de]2;+¥[car on sait à l"avance queyadmet au moins un

antécédent dans]2;+¥[, et c"est donc nécessairement le bon). En résumé,

On vient de trouverg1:

8x2]¥;2[;g1(x) =2x+1x+2.

;+¥.festdoncbijectivede32 ;+¥surf32 f32 ;lim+¥f = [1;+¥[. Notons encorefl"application de32 ;+¥dans[1;+¥[qui àxassocie p2x+31. Soient alorsx2[32 ;+¥[ety2[1;+¥[. f(x) =y,p2x+31=y,x=12 (3+(y+1)2),x=y22 +y1:

En résumé,8x232

;+¥;8y2[1;+¥[;y=g(x),x=y22 +y1. On vient de trouverg1:

8x2[1;+¥[;g1(x) =x22

+x1.4.fest définie surR, impaire. Pourx2[0;+¥[, 06f(x) =x1+x<1+x1+x=1. Donc,f([0;+¥[)[0;1[. Par

parité,f(]¥;0])]1;0]et mêmef(]¥;0[)]1;0[car l"image parfd"un réel strictement négatif

est un réel strictement négatif. Finalement,f(R)]1;1[. Vérifions alors quefréalise une bijection de

Rsur]1;1[. Soity2[0;1[etx2R. L"égalitéf(x) =yimpose àxd"être dans[0;+¥[. Mais alors f(x) =y,x1+x=y,x=y1y: Le réelxobtenu est bien défini, cary6=1, et positif, cary2[0;1[. On a montré que :

8y2[0;1[;9!x2R=y=f(x) (à savoirx=y1y):

Soity2]1;0[etx2R. L"égalitéf(x) =yimpose àxd"être dans]¥;0[. Mais alors f(x) =y,x1x=y,x=y1+y: 6

Le réelxobtenu est bien défini, cary6=1, et strictement négatif, cary2]1;0[. On a montré que :

8y2]1;0[;9!x2R=y=f(x) (à savoirx=y1+y):

Finalement,

8y2]1;1[;9!x2R=y=f(x);

ce qui montre quefréalise une bijection deRsur]1;1[. De plus, poury2]1;1[donné,f1(y)=y1y siy>0 etf1(y) =y1+ysiy<0. Dans tous les cas, on af1(y) =y1jyj. En notant encorefl"application deRdans]1;1[qui àxassociex1+jxj, on a donc

8x2]1;1[;f1(x) =x1jxj:Correction del"exer cice5 N1.Montrons que la restricti onde fàD, notéeg, est bien une application deDdansP. Soitz2D. On a

jzj<1 et en particulierz6=i. Donc,f(z)existe. De plus,

Re(f(z)) =12

(f(z)+f(z)) =12 z+izi+¯zi¯z+i =12

2z¯z2(zi)(zi)=jzj21jzij2<0:

Donc,f(z)est élément deP.gest donc une application deDdansP. 2.

Montrons que gest injective. Soit(z;z0)2D2.

g(z) =g(z0))z+izi=z0+iz

0i)iz0iz=iziz0)2i(z0z) =0)z=z0:

3.

Montrons que gest surjective. Soientz2DetZ2P.

g(z) =Z,z+izi=Z,z=i(Z+1)Z1(carZ6=1;

(ce qui montre queZadmet au plus un antécédent dansD, à savoirz=i(Z+1)Z1(mais on le sait déjà carg

est injective). Il reste cependant à vérifier que i(Z+1)Z1est effectivement dansD). Réciproquement, puisque

Re(Z)<0,

i(Z+1)Z1=jZ+1jjZ1j<1 (Zétant strictement plus proche de1 que de 1) etz2D. Finalementgest une bijection deDsurP, et :

8z2P;g1(z) =i(z+1)z1.Correction del"exer cice6 NMontrons par récurrence que8n>1;ånk=11k(k+1)(k+2)=n(n+3)4(n+1)(n+2). • Pourn=1,å1k=11k(k+1)(k+2)=16

1(1+3)4(1+1)(1+2)et la formule proposée est vraie pourn=1. Soitn>1. Supposons queånk=11k(k+1)(k+2)=

n(n+3)4(n+1)(n+2)et montrons queån+1k=11k(k+1)(k+2)=(n+1)(n+4)4(n+2)(n+3). 7 n+1å k=11k(k+1)(k+2)=nå k=11k(k+1)(k+2)+1(n+1)(n+2)(n+3) n(n+3)4(n+1)(n+2)+1(n+1)(n+2)(n+3)(par hypothèse de récurrence)

On a montré par récurrence que :

8n>1;ånk=11k(k+1)(k+2)=n(n+3)4(n+1)(n+2):Démonstration directe. Pourk>1,

1k(k+1)(k+2)=12

(k+2)kk(k+1)(k+2)=12

1k(k+1)1(k+1)(k+2)

et donc, n k=11k(k+1)(k+2)=12 (nå k=11k(k+1)nå k=11(k+1)(k+2)) =12 (nå k=11k(k+1)n+1å k=21k(k+1)) 12 12

1(n+1)(n+2)

=n2+3n4(n+1)(n+2)=n(n+3)4(n+1)(n+2)Correction del"exer cice7 N1.Montrons par récurrence que : 8n>1;ånk=1k=n(n+1)2

. Pourn=1,å1k=1k=1=1(1+1)2 . Soitn>1.

Supposons que

ånk=1k=n(n+1)2

et montrons queån+1k=1k=(n+1)(n+2)2 n+1å k=1k=nå k=1k+(n+1) =n(n+1)2 +(n+1) (par hypothèse de récurrence) = (n+1)(n2 +1) =(n+1)(n+2)2

On a montré par récurrence que :

8n>1;ånk=1k=n(n+1)2

.On peut donner plusieurs démonstrations directes.

1ère demonstration.Pourk>1,(k+1)2k2=2k+1 et doncånk=1((k+1)2k2) =2ånk=1k+ånk=11 ce qui s"écrit

(n+1)21=2ånk=1k+nou encore 2ånk=1k=n2+nou enfinånk=1k=n(n+1)2

2ème demonstration.On écrit

1+2+3+:::+ (n1) +n=S

n+ (n1) + (n2) +:::+2+1=S 8 et en additionnant (verticalement), on obtient 2S= (n+1)+(n+1)+:::+(n+1) =n(n+1)d"où le résultat. La même démonstration s"écrit avec le symbole sigma :

2S=nå

k=1k+nå k=1(n+1k) =nå k=1(k+n+1k) =nå k=1(n+1) =n(n+1):

3ème demonstration.On compte le nombre de points d"un rectangle ayantnpoints de large etn+1 points de long. Il y

en an(n+1). Ce rectangle se décompose en deux triangles isocèles contenant chacun 1+2+:::+n points. D"où le résultat.

4ème démonstration.Dans le triangle de PASCAL, on sait que pournetpentiers naturels donnés,

C pn+Cp+1n=Cp+1 n+1.

Donc, pourn>2 (le résultat est clair pourn=1),

1+2+:::+n=1+nå

k=2C1k=1+nå k=2

C2k+1C2k=1+(C2n+11) =n(n+1)2

2.

Pour k>1,(k+1)3k3=3k2+3k+1. Donc, pourn>1 :

3 nå k=1k2+3nå k=1k+nå k=11=nå k=1((k+1)3k3) = (n+1)31:

D"où,

n k=1k2=13 (n+1)313n(n+1)2 n =16 (2(n+1)33n(n+1)2(n+1)) =16 (n+1)(2n2+n); et donc

8n>1;ånk=1k2=n(n+1)(2n+1)6

:Pourk>1,(k+1)4k4=4k3+6k2+4k+1. Donc, pourn>1, on a 4 nå k=1k3+6nå k=1k2+4nå k=1k+nå k=11=nå k=1((k+1)4k4) = (n+1)41:

D"où :

n k=1k3=14 ((n+1)41n(n+1)(2n+1)2n(n+1)n) =14 ((n+1)4(n+1)(n(2n+1)+2n+1) 14 ((n+1)4(n+1)2(2n+1)) =(n+1)2((n+1)2(2n+1))4 =n2(n+1)24 9

8n>1;ånk=1k3=n2(n+1)24

= (ånk=1k)2:Pourk>1,(k+1)5k5=5k4+10k3+10k2+5k+1. Donc, pourn>1, 5quotesdbs_dbs1.pdfusesText_1