[PDF] [PDF] Chapitre 2 Formes bilinéaires symétriques, formes quadratiques

est une forme bilinéaire symétrique (vérifier la symétrie) 2 1 2 Matrice d'une forme bilinéaire symétrique On suppose E de dimension finie n Soit E = ( 



Previous PDF Next PDF





[PDF] Math-IV-algèbre Formes (bi)linéaires

Math-IV-algèbre Formes (bi)linéaires 3 1 Matrice d'une forme bilinéaire 3 6 Formes bilinéaires symétriques et formes bilinéaires alternées 24 4 Formes 



[PDF] Algèbre bilinéaire et géométrie - Institut de Mathématiques de

21 avr 2017 · (c) Si l1 et l2 sont deux formes linéaires sur E, alors q(x) = l1(x)l2(x) définit une forme quadratique 2 Formes bilinéaires en dimension finie 2 1 



[PDF] Algèbre bilinéaire et géométrie - Institut de Mathématiques de

13 avr 2018 · Ceci constitue le résumé de cours (prévisionnel) de l'UE d'algèbre sur tout espace vectoriel de dimension finie, toute forme bilinéaire s'écrira 



[PDF] Mathématiques, Algèbrebilinéaireet géométrieeuclidienne

Etudions tout d'abord les formes quadratiques dans le cas complexe 2 6 1 Proposition Soient E un espace vectoriel de dimension finie n sur C et q une forme 



[PDF] Formes bilinéaires et formes quadratiques, orthogonalité Cours

année LMD Mathématiques qui ont déjà fait leur cours en algèbre linéaire de la sociées aux formes bilinéaires symétriques, les notions du rang, noyau



[PDF] Chapitre 2 Formes bilinéaires symétriques, formes quadratiques

est une forme bilinéaire symétrique (vérifier la symétrie) 2 1 2 Matrice d'une forme bilinéaire symétrique On suppose E de dimension finie n Soit E = ( 



[PDF] algèbre bilinéaire - Institut de Mathématiques de Toulouse

13 déc 2019 · Soit q une forme quadratique de signature (s, t) sur un espace vectoriel réel E, et (ei) une base orthogonale Alors la matrice diagonale de q dans 



[PDF] Notes sur lalgèbre bilinéaire - Institut de Mathématiques de Toulouse

Enfin, une base orthogonale B est une base telle que b(ei, ej)=0 dès que i = j Théorème 2 1 — Soient E un espace vectoriel de dimension finie et q un forme 



[PDF] M42 Formes bilinéaires, espaces euclidiens - Université de Lille

Université de Lille Année 2017-2018 Licence Mathématiques 2ème année Semestre 4 M42 Formes bilinéaires, espaces euclidiens rédigé par Anne Moreau

[PDF] SMA 2014ai

[PDF] Algèbre bilinéaire

[PDF] Exercices Math Sup et Math Spé - Exo7

[PDF] Base d 'algèbre Chapitre 1 Calcul matriciel

[PDF] Filière : Licence Sciences Economiques et Gestion Journée d

[PDF] Algèbre Linéaire

[PDF] aide memoire d 'algebre - Math inversées

[PDF] Cours d 'algèbre linéaire

[PDF] Cours d 'algèbre linéaire

[PDF] ALGEBRE LINEAIRE Cours et exercices

[PDF] l1 introduction ? l 'algèbre linéaire - ENT

[PDF] Cours d 'algèbre linéaire

[PDF] Algèbre Linéaire

[PDF] L 'ALGÈBRE LINÉAIRE POUR TOUS

[PDF] Exercices Corrigés Matrices Exercice 1 #8211 Considérons les matrices

Chapitre 2

Formes bilin´eaires sym´etriques,

formes quadratiques

2.1 Formes bilin´eaires sym´etriques

Dans ce qui suit,Eest un espace vectoriel sur un corpsK.

2.1.1 D´efinition

D´efinition 2.1

Une application

b:E×E-→K est appel´ee uneforme bilin´eairequand ?x1,x2,y?E?λ?Kb(x1+λx2,y) =b(x1,y) +λb(x2,y) ?x,y1,y2?E?λ?Kb(x,y1+λy2) =b(x,y1) +λb(x,y2) (bilin´earit´e = lin´earit´e `a gauche + lin´earit´e `a droite).

On dit quebestsym´etriquequand

?x,y?E b(x,y) =b(y,x). Remarquer que la sym´etrie permet de ne v´erifier la lin´earit´e que d"un seul cˆot´e.

Exemples:

1. E=K. La multiplication (x,y)?→xyest une forme bilin´eaire sym´etrique surK×K. 5

6CHAPITRE 2. FORMES QUADRATIQUES

2.

E=R2. Le produit scalaire usuel

µµx1

x ,µy1 y ?→x1y1+x2y2 est une forme bilin´eaire sym´etrique surR2×R2. 3.

E=C([-1,1],R). L"application

C

0([-1,1],R)× C0([-1,1],R)-→R

(f,g)?-→Z 1 -1f(t)g(t)dt est une forme bilin´eaire sym´etrique. 4.

E=Mn(K). L"application

M n(K)×Mn(K)-→K (A,B)?-→trace(AB) est une forme bilin´eaire sym´etrique (v´erifier la sym´etrie).

2.1.2 Matrice d"une forme bilin´eaire sym´etrique

On suppose

Ede dimension finien. SoitE= (e1,...,en) une base deE. Soitbune forme bilin´eaire sym´etrique surE×E.

D´efinition 2.2

La matriceME(b)debdans la baseEest la matrice sym´etrique n×nqui a pour coefficientsb(ei,ej)(i num´ero de ligne entre 1 etn,jnum´ero de colonne entre 1 etn). Sixetysont des ´el´ements deEdont les vecteurs colonnes de coordonn´ees dans la baseEsontXetYrespectivement, on a b(x,y) =tX ME(b)Y . Dans l"autre sens, siMest une matrice sym´etrique dansMn(K), alors (x,y)?→tX M Y(o`uXetYsont les vecteurs colonnes des coordonn´ees de xetydans la baseE) est bien une forme bilin´eaire sym´etrique.

Exemple:µ3 1

est la matrice (dans la base canonique) de la forme bilin´eaire sym´etrique

µµx1

x ,µy1 y ?-→3x1y1-2x2y2+x1y2+x2y1. SoitE?une autre base deEetPla matrice de changement de base deE `aE?.

2.1. FORMES BILIN

´EAIRES SYM´ETRIQUES7

Rappel : Changement de base.

D´efinition 2.3

La matrice de changement de base deE`aE?= (e?1,...,e?n)est la matrice inversibleP dont laj-`eme colonne est form´ee des coordonn´ees dee?jdans la baseE.

Proposition 2.4

Soitxun ´el´ement deE,X(respX?) le vecteur colonne de ses coodonn´ees dansE (resp.E?). AlorsX=P X?. Soituun endomorphisme deE,M(resp.M?) sa matrice dans la baseE (resp.E?). AlorsM?=P-1AP. Proposition 2.5 (Changement de base pour les f.b.s.)

La matrice de

la forme bilin´eaire sym´etrique dans la nouvelle baseE?est M

E?(b) =tP ME(b)P .

2.1.3 Forme bilin´eaire et dualit´e

Soitb:E×E→Kune forme bilin´eaire sym´etrique. Pour toutx?E, l"application b(·,x) :E-→K y?-→b(y,x) est une forme lin´eaire surK, c"est `a dire un ´el´ement du dualE?.

Proposition 2.6

L"application

b:E-→E? x?-→b(·,x) est lin´eaire. On appelle?bl"application lin´eaire deEdans son dual associ´ee `a la forme bilin´eaire sym´etriqueb. SiEest de dimension finie etEest une base deE, alors la matrice debdansEest ´egale `a la matrice de?b:E→E?o`uEest muni de la baseEetE?de la base dualeE?.

D´efinition 2.7

Lenoyaude la forme bilin´eaire sym´etriqueb, not´eker(b) est le noyau de?b, c.-`a-d. : ker(b) ={x?E| ?y?E b(y,x) = 0}. La forme bilin´eaire sym´etriquebest ditenon d´eg´en´er´eequand son noyau est r´eduit `a{0}. SiEest de dimension finie, lerangdebest le rang de l"application?b, c.-`a-d. aussi le rang de la matrice debdans une base deE.

8CHAPITRE 2. FORMES QUADRATIQUES

On peut v´erifier que toutes les formes bilin´eaires sym´etriques donn´ees en exemple apr`es la d´efinition 2.1 sont non d´eg´en´er´ees. En dimension finie, une forme bilin´eaire sym´etriquebsurE×Eest donc non d´eg´en´er´ee si et seulement si sa matrice dans une base deEest inversible.

Proposition 2.8

Soitbune forme bilin´eaire sym´etrique non d´eg´en´er´ee sur E×E, o`uEest de dimension finie. Alors, pour toute forme lin´eaire??E?, il existe un uniquex?Etel que ?y?E ?(y) =b(y,x).

2.1.4 Orthogonalit´e

Dans ce paragraphe,best une forme bilinaire sym´etrique surE×E.

D´efinition 2.9

SoitFun sous-espace vectoriel deE. L"orthogonal deF pourbest le sous-espace deEd´efini par F ?={x?E| ?y?F b(y,x) = 0} Par exemple, pour le produit scalaire dansR3, l"orthogonal d"une droite vectorielleDest bien le plan vectoriel orthogonal (au sens usuel) `aD. Le lien avec l"orthogonal pour la dualit´e se fait grˆace `a l"application lin´eaire?b:E→E?associ´ee `ab.

Proposition 2.10

F ?= (?b(F))◦.

Th´eor`eme 2.11

On supposeEde dimension finien.

Sibest non d´eg´en´er´ee, alorsdim(F?) =n-dim(F). En g´en´eraldim(F?) =n-dim(F) + dim(F∩ker(b)).

Proposition 2.12

On a toujoursF?(F?)?. SiEest de dimension finie

etbnon d´eg´en´er´ee, on aF= (F?)?.

2.2 Formes quadratiques

A partir de maintenant et pour tout le reste du chapitre, le corpsKest suppos´e de caract´eristique diff´erente de 2, ce qui veut dire que 2?= 0 dansK (par exemple,Z/2Zest exclu). On d´esigne toujours parEun espace vectoriel surK.

2.2. FORMES QUADRATIQUES9

2.2.1 D´efinitions

D´efinition 2.13

Une applicationq:E→Kest appel´ee forme quadratique surEs"il existe une forme bilin´eaire sym´etriquebsurE×Etelle que ?x?E q(x) =b(x,x). La forme quadratiqueqest diteassoci´ee `a la forme bilin´eaire sym´etrique b. Les formes quadratiques associ´ees aux formes bilin´eaires sym´etriques donn´ees en exemple apr`es la d´efinition 2.1 sont respectivement 1. x?→x2(surK), 2. x1 x ?→x21+x22(surR2), 3. f?→R1 -1f(t)2dt(surC0([-1,1],R)), 4.

A?→trace(A2) (surMn(K)).

Proposition 2.14

Siqest une forme quadratique surE, alors il existe une unique forme bilin´eaire sym´etriquebsurE×Etelle queqsoit associ´ee `ab. On l"appelle laforme polaire deq, et elle est d´efinie par b(x,y) =1 2 (q(x+y)-q(x)-q(y)). SiEest de dimension finie etEune base deE, lamatriceMde la forme quadratiqueqdans la baseEest la matrice de sa forme polaire. La forme quadratique s"exprime alors matriciellement commeq(x) =tX M X, o`uXest le vecteur colonne des coordonn´ees dexdansE. Une forme quadratiqueqs"exprime comme un polynˆome homog`ene du second degr´e en fonction des coordonn´ees (x1,...,xn) : c"est une somme de monˆomes enx2iouxixj. Par exemple, la forme quadratique q(x1,x2,x3) =x21+ 7x22+ 6x1x2-2x1x3+ 8x2x3 a pour matrice 0 @1 3-1 3 7 4 -1 4 01 A Une forme quadratiqueqest ditenon d´eg´en´er´eequand sa forme polaire l"est. On d´efinit lenoyauet lerangd"une forme quadratique comme ceux de sa forme polaire. De mˆeme, l"orthogonal d"un sous-espacepour une forme quadratique est son orthogonal pour la forme polaire.

10CHAPITRE 2. FORMES QUADRATIQUES

D´efinition 2.15

Un ´el´ementxdeEest ditisotropepour la forme qua- dratiqueqquandq(x) = 0. Exemple: La forme quadratiqueqsurR2d´efinie parq(x1,x2) =x21-x22 a pour matriceµ1 0 . Elle est non d´eg´en´er´ee, son noyau est r´eduit `a {0}. Mais l"ensemble de ses vecteurs isotropes est la r´eunion des deux droites vectorielles d"´equationsx2=x1etx2=-x1.

Proposition 2.16

Soitqune forme quadratique surE. Sixest un ´el´ement non isotrope deE, alorsVect(x)?est un hyperplan deEsuppl´ementaire de

Vect(x).

2.2.2 Base orthogonale, d´ecomposition en carr´es

D´efinition 2.17

quotesdbs_dbs22.pdfusesText_28