[PDF] [PDF] Exercices Corrigés Applications linéaires Exercice 1 – On consid

L'espace vectoriel kerf est donc de dimension 2 Le noyau de f n'est par réduit au vecteur nul de R4 Donc f n'est pas injective 3) La 



Previous PDF Next PDF





[PDF] Applications linéaires, matrices, déterminants - Licence de

Applications linéaires, matrices, déterminants Allez à : Correction exercice 1 Exercice 2 Montrer que et sont des sous-espaces vectoriels de ℝ 3



[PDF] Espaces vectoriels et applications linéaires Correction des exercices

18 mar 2015 · vectoriels et applications linéaires Correction des exercices Exercice 3 : Soit e un K-espace vectoriel de dimension finie n ∈ N∗ et f



[PDF] Exercices Corrigés Applications linéaires Exercice 1 – On consid

L'espace vectoriel kerf est donc de dimension 2 Le noyau de f n'est par réduit au vecteur nul de R4 Donc f n'est pas injective 3) La 



[PDF] 70 exercices dalg`ebre linéaire 1 Espaces vectoriels

Montrer que (x, f(x), ,fn−1(x)) est une base de E 2 2 Applications linéaires, prolongement par linéarité,isomorphismes Exercice 21 Soit E1 l'espace vectoriel des 



[PDF] Espaces vectoriels et applications linéaires Espaces vectoriels

Exercice 1 Soit E un espace vectoriel Pour x, y ∈ E et λ, µ ∈ K, montrer que l'on a : 1 0 x = O, 1 



[PDF] ESPACES VECTORIELS ET APPLICATIONS LINEAIRES { } - Unisciel

4) Montrer que ),( wv est une base de F Page 2 Algèbre linéaire 2 Exercices de Mathématiques ECS1 - Catherine Laidebeure - 2012



[PDF] Feuille de TD 4 : Applications linéaire, espaces vectoriels de

Exercice 2 Soient E un espace vectoriel sur K et ϕ une application linéaire de E dans E On suppose que Ker ϕ ∩ Imϕ = {0} 



[PDF] Applications linéaires

25 fév 2021 · Systèmes d'équations linéaires, résolution par la méthode du pivot de Gauss — Espace vectoriel réel, sous-espace vectoriel, sous-espace 



[PDF] Feuille dexercices : espaces vectoriels et applications linéaires

Feuille d'exercices : espaces vectoriels et applications linéaires savoir tester si un ensemble est un sous-espace vectoriel Exercice 1 Préciser si les ensembles  

[PDF] exercices sur les expressions avec avoir

[PDF] exercices sur les graphes non orientés

[PDF] exercices sur les homonymes cm1 pdf

[PDF] exercices sur les inéquations

[PDF] exercices sur les inéquations 3eme

[PDF] exercices sur les inequations 4eme

[PDF] exercices sur les inéquations du second degré pdf

[PDF] exercices sur les inéquations pdf

[PDF] exercices sur les inequations seconde

[PDF] exercices sur les intervalles de fluctuation en seconde

[PDF] exercices sur les jours de la semaine ce1

[PDF] exercices sur les jours de la semaine cp

[PDF] exercices sur les jours de la semaine cp pdf

[PDF] exercices sur les jours de la semaine en anglais

[PDF] exercices sur les jours de la semaine en espagnol

Exercices Corriges

Applications lineaires

Exercice 1{On considere l'application lineaire :

f:R4!R2;(x1;x2;x3;x4)7!(x1+x2+x3+x4;x1+ 2x2+ 3x3+ 4x4):

1) Quelle est la matrice defdans les bases canoniques deR2etR4?

2) Determiner le noyau def. L'application lineairefest-elle injective ?

3) Quelle est l'image def? L'applicationfest-elle surjective ?

4) Soity1,y2deux reels, preciser un vecteurudeR4tel quef(u) = (y1;y2).

Exercice 2{SoitEunR-espace vectoriel de dimension 3 etB= (e1;e2;e3) une base deE. On considerefl'application lineaire deEversEtelle que : f(e1) =e1+e2+e3; f(e2) = 2e1e2+ 2e3; f(e3) = 4e1+e2+ 4e3

1) Quelle est la matriceAdefdans la baseB? Siu2Ea pour coordonnees (x1;x2;x3) dans

la baseB, quelles sont les coordonnees def(u) dans la baseB?

2) Calculerf(e1+ 2e2).

3) Determiner le noyau et l'image def.

4) Ces sous-espaces vectoriels deEsont-ils supplementaires ?

5) Quelle est la matrice def2dans la baseB? En deduiref2(e1),f2(e2),f2(e3).

Exercice 3{SoitEunR-espace vectoriel de dimension 2 etB= (e1;e2) une base deE. On considerefl'application lineaire deEversEde matrice dans la baseB:

M= 1 2

1 2!

1) Preciserf(e1) etf(e2). Soitaun reel, determiner a l'aide de la matriceMle vecteur

f(ae1+ 17e2).

2) Determiner le noyau et l'image def.

3) Soitu= 2e1e2,v=e1+e2. Montrer que (u;v) est une base deE. Quelle est la matrice

defdans cette base ?

4) Montrer que kerfet Imfsont des sous-espaces supplementaires deE.

Exercice 4{Posonse1= (1;2) ete2= (1;3).

1) Montrer que (e1;e2) est une base deR2.

Soitf2 L(R2) denie parf(e1) = 2e2etf(e2) =e1+ 2e2.

2) Quelle est la matriceBdefdans la base (e1;e2) ?

3 ) Siu2R2a pour coordonnees (X1;X2) dans la base (e1;e2), quelles sont les coordonnees

def(u) dans la base (e1;e2) ?

4) Quelle est la matriceAdefdans la base canonique deR2?

1 Exercice 5{On considere l'applicationf:R4!R3denie par : f(x1;x2;x3;x4) = (x1+x2+x3+x4;2x1+x2x3+x4;x1x2+x3x4): SoitB= (e1;e2;e3;e4) la base canonique deR4etB0= (1;2;3) celle deR3.

1) Quelle est la matriceAdefdans ces bases canoniques ? Preciserf(e1);f(e2);f(e3);f(e4).

2) Donner une base echelonnee de Vect(f(e1);f(e2);f(e3);f(e4)) par rapport a la baseB0.

3) En deduire la dimension de l'image def, la surjectivite defet la dimension du noyau def.

4) Determiner une base du noyau def.

Exercice 6{1) Soitu1= (1;2) etu2= (1;3). Exprimeru1etu2dans la base canonique (e1;e2) deR2. Montrer que (u1;u2) est une base deR2.

2) Soitfl'application de matrice dans la base (e1;e2) :A= 2 1

6 3! . Calculerf(u1) et f(u2). Puis, la matriceBdefdans la base (u1;u2).

3) Qelles sont les matrices de passage de la base (e1;e2) a la base (u1;u2) et de la base (u1;u2)

a la base (e1;e2). Quel est le lien entreAetB? Exercice 7{Soite1= (1;0);e2= (0;1) les vecteurs deBla base canonique deR2. Posons u

1= (1;4) etu2= (1;3).

1) Montrer que (u1;u2) est une base deR2noteeB0.

Soitf:R2!R2, l'application lineaire de matriceAdans la base canonique deR2:

A= 7 2

24 7!

2) Preciser les vecteursf(e1) etf(e2). Preciserf2.

3) Preciserf(u1) etf(u2). En deduire la matriceBdefdans la baseB0.

4) Preciser les matrices de passage entre les basesBetB0. Quelles sont les coordonnees des

vecteurse1ete2dans la base (u1;u2) ? Retrouver la matrice defdans la baseB0en utilisant ces matrices de passage.

5) Montrer que les sous-espaces vectoriels Vect(u1) et Vect(u2) sont supplementaires. Comparer

fet la symetrie vectoriellespar rapport a Vect(u1) parallellement a Vect(u2).

6) Quelle est la matrice de projection vectoriellepsur Vect(u1) parallellement a Vect(u2) dans

la baseB0, dans la baseB? Exercice 8{Designons parB= (e1;e2) la base canonique deR2. Commencer par preciser les vecteurse1ete2.

1) On considere l'application lineairefdeR2de matriceAdans la baseB:

A= 114

3011!
Preciser les vecteursf(e1) ,f(e2) ,f(2;5) ,f(1;3).

2) On posev1= (2;5) etv2= (1;3). Montrer queB0= (v1;v2) est une base deR2. Quelle est

2 la matriceBdefdans cette base ?

3) Quelle est la matricePde passage de la baseBa la baseB0?

4) Ecrire la formule reliantAetB. CalculerP1et verier cette formule.

5) Determiner que imf et kerf.

Exercice 9{(extrait du sujet d'examen 2008) On considere les applications lineaires : f:R3!R2: (x1;x2;x3)7!(2x1x3;3x1+x2+ 2x3) g:R2!R3: (x1;x2)7!(x1+x2;x2;2x1x2):

1) Determiner la matriceAdefdans les bases canoniques deR3etR2. Puis, determiner la

matriceBdegdans les bases canoniques deR2etR3.

2) Calculer les matricesAB,BA, (AB)2.

3) Montrer queABest une matrice inversible. Preciser (AB)1.

4) Expliciter l'application (fg)2.

Exercice 10{(extrait du sujet d'examen 2008) Notonse1= (1;0) ete2= (0;1) les deux vecteurs de la base canonique deR2. Posons1= 3e12e2et2=e1+e2. A1) Expliciter1et2. Puis montrer que (1;2) est une base deR2. A2) Exprimer le vecteure1(resp.e2), comme combinaison lineaire des vecteurs1;2. Soitf:R2!R2, l'application lineaire denie parf(1) =1etf(2) =2. A3) Preciser la matriceAdefdans la base (1;2). CalculerA2. Que pouvez vous dire de ff? A4) Exprimer le vecteurf(e1) (resp.f(e2)), comme combinaison lineaire des vecteurs dee1;e2. A5) En deduireBla matrice defdans la base (e1;e2). Quelle est la valeur de la matriceB2? SoitD1la droite vectorielle deR2engendree par1etD2la droite vectorielle deR2engendree par2. B1) Donner une equation de la droite vectorielleD1(resp.D2) deR2. B2) Montrer queD1etD2sont deux sous-espaces vectoriels supplementaires. B3) Soitpla projection surD1parallelement aD2etsla symetrie vectorielle surD1par- allelement aD2. Expliciter pour tout (x1;x2)2R2, les deux couples de reelsp(x1;x2) et s(x1;x2).

C1) Comparerfets.

Exercice 11{(extrait du sujet d'examen 2008) On considere le systeme de 4 equations a 4 inconnues : ()8 >>:x

1x2+x3x4= 0

x

1+ 2x3+x4= 0

x

1+x2+ 3x3+ 3x4= 0

x

1+ 2x2+ 4x3+ 5x4= 0:

3

1) Les variablesx1;x2;x3;x4sont ordonnes naturellement. Trianguler ce systeme d'equations

a l'aide de l'algorithme de Gauss. Quelles sont les variables libres de ce systeme ? SoitFle sous-espace vectoriel deR4constitue par les solutions du systeme ().

2) Resoudre le systeme () et donner une base deF.

Soitv1= (1;1;1;1);v2= (1;0;1;2);v3= (1;2;3;4);v4= (1;1;3;5). On designe parGle sous-espace vectoriel< v1;v2;v3;v4>deR4engendre parv1;v2;v3;v4.

3) A l'aide d'un algorithme du cours, donner une base deGechelonnee par rapport a la base

canoniqueB4deR4.

4) Determiner alors, en suivant par exemple l'algorithme du cours, un systeme de 2 equations

a 4 inconnues dontGest l'ensemble des solutions.

5) Montrer que (v1;v2) est une base deG. Preciser l'expression dev3etv4dans la base (v1;v2)

deG(on pourra utiliser les calculs eectues dans la question 3). On considere l'application lineairefdeR4versR4dont la matrice dans la baseB4est : A=0 B

BB@11 11

1 0 2 1

1 1 3 3

1 2 4 51

C CCA:

6) Determinerf(e1);f(e2);f(e3);f(e4) les images parfdes vecteurse1;e2;e3;e4de la base

canoniqueB4deR4. En deduire une base de Imfl'image def.

7) Soit (x1;x2;x3;x4)2R4, posons (y1;y2;y3;y4) =f(x1;x2;x3;x4). Preciser l'expression de

(y1;y2;y3;y4) a l'aide de (x1;x2;x3;x4).

8) Determiner une base de kerfle noyau def.

9) Montrer que l'intersection de kerfet Imfest reduite au vecteur nul. En deduire que kerf

et Imfsont deux sous-espaces vectoriels supplementaires.

Correction de l'exercice 1

1) Ecrivons les elements deR4etR2en colonne.

On a :

f0 B BB@x 1 x 2 x 3 x 41
C

CCA= x

1+x2+x3+x4

x

1+ 2x2+ 3x3+ 4x4!

= 1 1 1 1

1 2 3 4!

0 B BB@x 1 x 2 x 3 x 41
C CCA: Ainsi, la matrice defdans les bases canoniques deR2etR4est :

A= 1 1 1 1

1 2 3 4!

2) Le noyau defest par denition constitue des vecteursx= (x1;x2;x3;x4) deR4tels que

f(x1;x2;x3;x4) = 0. Cette equation equivaut a (x1;x2;x3;x4) est solution du systeme : (x

1+x2+x3+x4= 0

x

1+ 2x2+ 3x3+ 4x4= 0:

4 Ce systeme a m^emes solutions que le systeme triangule pour l'ordre naturel des variables : (x

1+x2+x3+x4= 0

+x2+ 2x3+ 3x4= 0: Les variables libres de ce syteme triangule sontx3etx4. On obtient en le resolvant : kerf=fx3(1;2;1;0) +x4(2;3;0;1) tels quex3; x42Rg: Nous avons appliquer l'algorithme de resolution. Nous pouvons donc conclure que kerfadmet pour base le couple de vecteurs deR4: (1;2;1;0);(2;3;0;1). L'espace vectoriel kerfest donc de dimension 2. Le noyau defn'est par reduit au vecteur nul deR4. Doncfn'est pas injective.

3) La formule de dimension, nous apprends :

dimR4= dim Imf+ dim kerf : Soit, 4 = dim Imf+ 2. Ainsi, l'espace vectoriel Imf est de dimension 2. Comme il s'agit d'un sous-espace vectoriel deR2qui est aussi de dimension 2, nous avons : Imf=R2. L'image defconcide avecR2l'espace but def. Donc,fest surjective.

4) De la surjectivite def, il resulte que pour tout (y1;y2)2R2, il existe (x1;x2;x3;x4)2R4

tels quef(x1;x2;x3;x4) = (y1;y2). Fixons (y1;y2); les (x1;x2;x3;x4) qui conviennent sont les solutions du systeme : (x

1+x2+x3+x4=y1

x

1+ 2x2+ 3x3+ 4x4=y2:

(x

1+x2+x3+x4=y1

+x2+ 2x3+ 3x4=y2y1: Les variables libres de ce syteme triangule sontx3etx4. Ces solutions decrivent l'ensemble : S=f(y2y1;2y1y2;0;0) +x3(1;2;1;0) +x4(2;3;0;1) tels quex3x42Rg: Nous obtenons, si nous prenonsx3=x4= 0, la solution particuliere : (y2y1;2y1y2;0;0) Ainsi, nous avons montre que le quadruplet de reels (y2y1;2y1y2;0;0) verie : f(y2y1;2y1y2;0;0) = (y1;y2):

Correction de l'exercice 2

1) La matrice defdans la base (e1;e2;e3) est une matrice carree a trois lignes, ses colonnes sont

5 respectivement les coordonnees def(e1);f(e2);f(e3) dans la base (e1;e2;e3). Cette matrice est donc : A=0 B @1 2 4 11 1

1 2 41

C A: La matriceAdonne les les coordonnees def(u) dans la baseB. Ces coordonnees sont : 0 B @y 1 y 2 y 31
C A=0 B @1 2 4 11 1

1 2 41

C A0 B @x 1 x 2 x 31
C A=0 B @x

1+ 2x2+ 4x3

x

1x2+x3

x

1+ 2x2+ 4x31

C A:

2) En particulier les coordonnees def(e1+ 2e2) sont :

0 B @y 1 y 2 y 31
C A=0 B @1 2 4 11 1

1 2 41

C A0 B @1 2 01 C A=0 B @5 1 51
C A:

Ainsi,f(e1+ 2e2) = 5e1e2+ 5e3.

3) Considerons un vecteuru2Eet notons (x1;x2;x3) ses coordonees dans la baseB:u=

x

1e1+x2e2+x3e3. Le vecteuruest dans kerfsi et seulement sif(u) = 0. Donc, si et seulement

si les coordonnees def(u) sont nulles, c'est a dire solutions du systeme lineaire : 8>< :x

1+ 2x2+ 4x3= 0

x

1x2+x3= 0

x

1+ 2x2+ 4x3= 0:

Ce systeme equivaut a :

(x

1+ 2x2+ 4x3= 0

x

1x2+x3= 0:

ou encore au systeme triangule (l'ordre des variables est l'ordre naturel) : (x

1+ 2x2+ 4x3= 0

3x2+ 3x3= 0:

En resolvant ce systeme, on trouve que ses solutions sont :

S=fx3(2;1;1) tels quex32Rg:

Ssont les coordonnees des vecteurs de kerfAinsi :

kerf=fx3(2e1e2+e3) tels quex32Rg: Le noyau defest donc un espace vectoriel de dimension 1 de base le vecteur non nul :

2e1e2+e3:

6

Il resulte de la formule de dimension :

3 = dimE= dim Imf+ dim kerf= dim Imf+ 1:

Ainsi, l'image defest un espace vectoriel de dimension 2. D'apres le cours, puisque (e1;e2;e3) engendrentE, Imfest engendre parf(e1);f(e2);f(e3). Determinons une base de Imfeche- lonnee dans la base (e1;e2;e3). M (e1;e2;e3)(f(e1);f(e2);f(e3)) =0 B

BB@f(e1)f(e2)f(e3)

1 2 4 11 1

1 2 41

C CCA; M (e1;e2;e3)(f(e1);f(e2)2f(e1);f(e3)4f(e1)) =0 B @1 0 0 133

1 0 01

C A; M (e1;e2;e3)(f(e1);f(e2)2f(e1);f(e3)4f(e1)(f(e2)2f(e1))) =0 B @1 0 0 13 0

1 0 01

C A: Ainsi, Imf admet le couple de vecteurs (e1+e2+e3;e2) comme base echelonnee relativement a la base (e1;e2;e3) deE. On retrouve de plus quef(2e1e2+e3) = 0, c'est a dire que2e1e2+e32kerf.

4) Pour toute application lineaire de sourceE:

dimE= dim Imf+ dim kerf : Comme l'espace but defestE(fest un endomorphisme), Imfest aussi un sous-espace vec- toriel deE. Pour demontrer que Imfet kerfsont des sous-espaces supplementaires, il sut de montrer que leur intersection est reduite au vecteur nul. Determinons un systeme d'equations de Imfrelativement a la base (e1;e2;e3). Considerons un vecteurude coordonees (x1;x2;x3) dans la base (e1;e2;e3). Considerons la matrice : M (e1;e2;e3)(e1+e2+e3;e3;u) =0quotesdbs_dbs20.pdfusesText_26