[PDF] [PDF] Chapitre 44 –Le moment dinertie et lénergie cinétique de rotation

dépend de l'inertie de translation qui est la masse m et du module de la vitesse v au carré : 2 Situation 1 : L'énergie cinétique d'un cylindre en rotation On



Previous PDF Next PDF





[PDF] 10 Chap04 Géométrie des masses

18 déc 2020 · m représentant la masse totale du cylindre b) Moment d'inertie par rapport à l' axe z Appliquons la définition (formule éq 4 115 ) :



[PDF] Le moment dinertie du cylindre creux

représente la masse totale du cylindre et R0 le grand rayon, r0 le petit rayon La définition du moment d'inertie I = dm r2 fournit le résultat final en consultant 



[PDF] 5 La masse volumique

Récipient à trop plein et cylindre gradué pour les solides de forme Existe-t-il une relation entre la masse et le volume ? Formule une hypothèse Mesurons la  



[PDF] Procédé et système de calcul de la masse dair frais dans un

masse d'air frais maf dans chaque cylindre étant caractérisé en ce qu'il comprend un exposant qui est défini par la formule des gaz parfaits en compression 



[PDF] Moments dinertie

Soit un disque plein de masse m et de rayon R: 2 2 Oz mR J = et 2 4 Ox Oy Soit un cylindre creux de masse m, de rayon R et de longueur l: 2 Oz J mR =



[PDF] LA MASSE, LE POIDS, LA RELATION ENTRE POIDS ET - Fastef

Les deux concepts « poids et masse » sont très utilisés dans la vie courante Cependant ils C'est un cylindre formé d'un alliage de platine et formule de ρ ?



[PDF] Chapitre 44 –Le moment dinertie et lénergie cinétique de rotation

dépend de l'inertie de translation qui est la masse m et du module de la vitesse v au carré : 2 Situation 1 : L'énergie cinétique d'un cylindre en rotation On



[PDF] Calcul du poids volumétrique - Air Canada

Calculer le volume en utilisant le diamètre pour la longueur et la largeur Par exemple, mesurer D x D x H La boîte a la même masse volumétrique que le cylindre



[PDF] Exercices sur le chapitre 1 Lair qui nous entoure

Calculer la masse de l'air contenu dans cette salle Voir ( formule utilisée ) V = 7 X 12 X 2,5 On sait qu'un litre d'air a une masse d'environ 1g Il faut donc 

[PDF] exercice masse volumique 4eme corrigé

[PDF] masse molaire propane

[PDF] masse molaire du dioxygene

[PDF] calculer la masse molaire de l'éthanol

[PDF] acétaldéhyde masse molaire

[PDF] masse molaire methanol

[PDF] quantité de matière du saccharose

[PDF] c12h22o11 we're goin’ down

[PDF] calculer la masse molaire moléculaire

[PDF] masse d un morceau de sucre

[PDF] masse molaire fructose

[PDF] tableau d'effectif et de frequence

[PDF] calcul effectif statistique

[PDF] calcul moyenne statistique avec intervalle

[PDF] moyenne statistique formule

[PDF] Chapitre 44 –Le moment dinertie et lénergie cinétique de rotation Référence: Marc Séguin, Physique XXI Volume APage1

Note de cours rédigée par: Simon Vézina

Chapitre4.4-Le moment d'inertieet l'énergie

cinétique de rotation

L'énergie cinétique en rotation

L'énergie cinétiqueKest par définition l'énergieassociéeau mouvement d'uncorps. Lorsque celui-ci effectue une translation, l'énergie cinétiquedépend de l'inertie de translation quiestla massemetdu modulede la vitessevau carré: 2 2 1mvK oùK: Énergie cinétique de translation (J) m: Masse de l'objet (inertie de translation) (kg) v: Vitesse de l'objet (m/s) Lorsqu'uncorpseffectue unerotationà vitesseautour d'un axe, le corpsest en mouvement et possède uneénergie cinétique. Puisque l'ensemble du corpsse déplace avec une vitesse angulaire commune, on peut définir une énergie à partir de cette vitesse.L'inertie de rotationIpour cette expression d'énergien'est pas uniquement la massemcar l'énergie possède comme unitélejoule (22/smkgmNJ). Afin de préserver la forme de l'expression de l'énergie cinétique, voici l'expression de l'énergie cinétique en rotation qui respecte l'unité du joule: 2 2 1IK oùK: Énergie cinétique de l'objet en rotation (J) I: Inertie de l'objet en rotation autour d'un axe (2mkg) : Vitesse angulaire (rad/s)

Preuve:

Évaluons les unités de l'inertie de rotation à partir de la définition del'énergie cinétique

de rotation: 2 2 1IK 2 2

1IK(Évaluer les unités)

22
2 s 1 s mkgI(2s mkgKets 1 s rad) m v K I K

Axe de

rotation Référence: Marc Séguin, Physique XXI Volume APage2

Note de cours rédigée par: Simon Vézina

L'inertieen rotation

En rotation, l'inertie d'un corps dépend de sa masse, de sa force et de sa positionpar rapport à l'axe de rotation du corps. Lorsque le corps peut être décomposé enNmassesponctuelles im, l'inertie totale du corps seraégale àl'addition de toutes les inerties associées à chaque masseponctuelle : N i iirmI 1 2 1m1r 2r 2m 3m 3r axerotation oùI: Inertie totale du système de masse (2mkg) im: Masseponctuellei(kg) ir:Rayon de la trajectoire circulairede la masse ponctuellei(m) N: Nombre de masses ponctuellesdans le calcul du moment d'inertie

Preuve:

Considérons un corps rigide de masse totalmconstitué deNélément de masseimeffectuant une rotation autour d'un axe de rotation à une vitesse angulaire. Il est important de préciser que l'ensemble du corps tourne à une vitesse, mais que chaque élémentimse déplace à une vitesseivetà une distanceirde l'axe de rotation. Évaluons l'inertietotale du corps à partir de la définition de l'énergie cinétique: 1m 1r 2r 2m 3m3r axe rotation 2v 1v 3v N i iKK 1 N i iivmK 1 2 2

1(Remplacer2

2 1 iiivmK) N i iiirmK 1 2 2

1(Remplaceriiirv)

N i iiirmK 1 22
2

1(Simplifier)

N i iirmK 1 22
2

1(Vitesse angulaire commune,i)

N i iirmK 1 22
2

1(Factoriser les constantes dans la sommation)

N i iIK 1 2 2

1(Inertie d'une particule ponctuelle,2

iiirmI) 2 2 N i iII 1) Référence: Marc Séguin, Physique XXI Volume APage3

Note de cours rédigée par: Simon Vézina

Moment d'inertiede différentes géométries

Voici un tableau de différentes géométries où le moment d'inertie a été calculé en

fonction de la masse de l'objet, de sa forme et de sa position par rapport à l'axe de rotation. Les détails des calculs se trouvent dans lechapitre 4.5:Le moment d'inertie par intégration.

GéométrieSituationSchémaMoment

d'inertie

Cylindre creux de

rayonRtournant autour de son axe de symétrie 2MRI

CylindreCylindre plein de

rayonRtournant autour de son axe de symétrie axe R M 2 2 1MRI

Coquille sphérique

mince de rayonR tournant autour de son centre axe R M 2 3 2MRI

Sphère

Sphère pleine de

rayonRtournant autour de son centre axe RM2 5 2MRI

Tigemince de

longueurLtournant autour d'un axe perpendiculaire à elle- même passant par son centre L axe M2 12 1MLI

TigeTige mince de

longueurLtournant autour d'un axe perpendiculaire à elle- même passant par une extrémité L axe M2 3 1MLI R M Référence: Marc Séguin, Physique XXI Volume APage4

Note de cours rédigée par: Simon Vézina

Situation 1:L'énergie cinétique d'un cylindre en rotation.On désire calculer l'énergie cinétique d'un cylindre de cuivre de 3 m de rayon et de 2 m de hauteur qui tourne autour de son axe de symétrie à 500 tours par minutes. (Le cuivre a une masse volumiquede

8900 kg/m3.)3 m

axe 2 m

Évaluer la masse totale du cylindre:

23890022HRVmkg1003,55m

Évaluer le moment d'inertie du cylindre:

25231003,52

1 2

1mRI26mkg1026,2I

Évaluer la vitesse angulaire de rotation:

tour1 rad2ʌ s60 min1 min1 tours500rad/s52,36 Nous pouvons maintenant évaluer l'énergie cinétique:

26236,521026,22

1 2

1IKJ1010,39K

Situation 2:Le moment d'inertie de deux particules reliées par une tige.Soit le système formé par une balle A de 1 kg reliée à une balle B de 2 kg par une mince tige homogène T de 3 m de longueur dont la masse vaux 0,5 kg.Le diamètre des balles est négligeable par rapport à la longueur de la tige. On fait tourner le système autour d'un axe perpendiculaire à la tige qui passe par la balle A. On désire calculer le moment d'inertie du systèmepar rapport à l'axe de rotation. Par rapport à l'axe de rotation, nous pouvons évaluer le moment d'inertie de nos trois objets: 22

A01mRI0AI

22

B32mRI2

Bmkg18I

22

T35,03

1 3 1mLI2

Tmkg5,1I

Nous avons le moment d'inertie total suivant:

TB,A,i

iII TB,A, TBA i iIIIII

5,1180I2mkg5,19I

Aaxe B Tquotesdbs_dbs29.pdfusesText_35