[PDF] [PDF] TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables Exercice 1 Montrer d' après la definition que la fonction : f(x, y) = x2 + y2 est différentiable dans R2



Previous PDF Next PDF





[PDF] ´Eléments de calculs pour létude des fonctions de plusieurs

Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections `a la fin de chaque chapitre Je serai 4 2 Extrémum local d'une fonction de plusieurs variables 58 A Annales corrigées 111 B Trouver l'erreur 121



[PDF] MT22-Fonctions de plusieurs variables et applications

Toutes les fonctions citées ci-dessus sont des fonctions reliant une variable à deux ou trois autres variables Page 6 Sommaire Concepts Exemples Exercices



[PDF] L2 MASS - Math-Eco

Aide-mémoire et exercices corrigés G F ACCANONI Dernièremise-à-jour Lundi11février2013 Table des matières 1 Fonctions de plusieurs variables 3



[PDF] TD 5 Fonctions de plusieurs variables - webusersimj-prgfr

f(x, y) = ln(x2 + y2 − 2y + 4x) (penser à la forme canonique) 2 Continuité, dérivées partielles Exercice 6 Montrer que les fonctions suivantes sont continues en (0, 



[PDF] Planche no 22 Fonctions de plusieurs variables Corrigé

Donc ∂f ∂y (x0,y) n'a pas de limite quand y tend vers 0 et la fonction ∂f ∂y n' est pas continue en (x0,0) si x0 = 0 On a montré que f est de classe C1 sur Ω ∪ 



[PDF] TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables Exercice 1 Montrer d' après la definition que la fonction : f(x, y) = x2 + y2 est différentiable dans R2



[PDF] fonctions de plusieurs variables : continuité, différentielles, gradient

fonctions de plusieurs variables : corrigés des exercices 1 b) La fonction f possède des dérivées partielles en tout point distinct de l'origine, puisqu'elle



[PDF] Daniel Alibert - Cours et exercices corrigés - volume 12 - Walanta

Daniel ALIBERT Fonctions de plusieurs variables Intégrales dépendant d'un paramètre Objectifs : Chercher si une fonction de plusieurs variables est continue 



[PDF] Fonctions de plusieurs variables - Exo7 - Exercices de mathématiques

Exercice 1 **T Etudier l'existence et la valeur éventuelle d'une limite en (0,0) des fonctions suivantes : 1 xy x+y 2 xy x2+y2



[PDF] Mathématiques - Dunod

Les contenus complémentaires et les corrigés des exercices sont disponibles en ligne Chapitre 11 Introduction aux fonctions de plusieurs variables 294

[PDF] fonctions excel 2007 pdf gratuit

[PDF] fonctions exponentielles et logarithmes exercices résolus

[PDF] fonctions holomorphes exercices corrigés

[PDF] fonctions logarithmes et exponentielles bac pro

[PDF] fonctions logarithmes et exponentielles exercices corrigés

[PDF] fonctions logiques exercices corrigés

[PDF] fonctions numériques exercices corrigés pdf

[PDF] fond d'éclaircissement coiffure

[PDF] fond d'oeil bébé 1 an

[PDF] fond d'oeil bébé prématuré

[PDF] fond d'oeil durée

[PDF] fond d'oeil nourrisson

[PDF] fond de carte empire byzantin

[PDF] fond de carte etats unis bac

[PDF] fond de carte monde

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD3 - Différentiabilité des fonctions de plusieurs variables Exercice 1.Montrer d"après la definition que la fonction : f(x,y) =x2+y2 est différentiable dansR2. Calculer la différentielle. Solution. La fonctionfest différentiable au point(x0,y0)?R2ssi : lim

21+h22= 0.

Dès que :

f(x0+h1,y0+h2) =x20+h21+ 2x0h1+y20+h22+ 2y0h2, ?f(x0,y0) = (2x0,2y0), la limite se réduit à : lim (h1,h2)→(0,0)h

21+h22Èh

21+h22= lim(h1,h2)→(0,0)Èh

21+h22= 0.

Cela suffit pour prouver quefest différentiable dansR2.

Exercice 2.Soitf:R2?→Rdéfinie par :

f(x,y) =xexy. Est-elle différentiable au point(1,0)? Si oui, linéariserfau voisinage de(1,0)et approcher la valeurf(1.1,-0.1). Solution. La fonctionfest dérivable dansR2car composition de fonctions dérivables. Les dérivées partielles : ?f(x,y) = (∂xf(x,y),∂yf(x,y)) = (exy+xyexy,x2exy) sont elles-mêmes dérivables dansR2car composition de fonctions dérivables. La fonctionfest de classeC1surR2et donc elle est différentiable dansR2. En particulier elle est différentiable

au point(1,0). Dès que la fonction est différentiable, elle admet une linéarisation au voisinage

de(1,0): f(x,y) =f(1,0) + (x-1)∂xf(1,0) +y∂yf(1,0) +o(È(x-1)2+y2), f(x,y) = 1 + (x-1) +y+o(È(x-1)2+y2) =x+y+o(È(x-1)2+y2). Cette linéarisation est valide localement, au voisinage du point(1,0), et pas dans toutR2! Pour approcher la valuerf(1.1,-0.1)on calcule : f(1.1,-0.1)≈1.1-0.1≈1 e on sait que l"erreur d"approximation est un petit o de

È(x-1)2+y2. Plusx,ysont proches

(en terms de distance! ) du point(1,0)plus l"approximation est précise. Calculer avec une calculatrice la valeur exacte def(1.1,-0.1). 1

Exercice 3.Soitf:R2?→Rdéfinie par :

f(x,y) =x3-y3.

Dire si le graphe def:

G f={(x,y,z)?R3t.q.z=f(x,y)} admet un plan tangent au point(0,1,-1)et, le cas échant, donner l"équation du plan. Solution. Dire que le grapheGfadmet un plan tangent au point(0,1,-1)est équivalent à dire quefest différentiable au point(0,1). Clairement la fonctionfest de classeC1dansR2et donc différentiable dansR2. L"èquation du plan tangent est : t(x,y) =f(0,1) +∂xf(0,1)x+∂yf(0,1)(y-1) =-1-3(y-1) = 2-3y

Exercice 4.Soitf:R2?→Rdéfinie par :

f(x,y) =( x2y3x

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle de classeC1dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on utilise les cordonnées polaires de centre(0,0): x=rcosθ y=rsinθ avecr >0etθ?[0,2π[. On veut montrer que : lim r→0f(rcosθ,rsinθ) = 0 et que cette limite ne dépend pas de l"angleθ. En pratique il faut trouver une fonction g(r)de la seule variablertelle que etg(r)→0sir→0. Rappel : ne pas mettre la valuer absolue dans la majoration conduit

à des résultats faux.

f(rcosθ,rsinθ) =r2cos2θr3sin3θr

2(cos2θ+ sin2θ)=r3cos2θsin3θ

etr3→0sir→0. Donc lim (x,y)→(0,0)f(x,y) = 0 =f(0,0).

Cela prouve que la fonction est continue dansR2.

2 •Dérivabilité. On se demande si la fonctionfest dérivable. Si(x,y)?= (0,0): ∂f∂x (x,y) =2xy5(x2+y2)2 ∂f∂y (x,y) =x2y2(3x2+y2)(x2+y2)2 Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 ∂f∂y (0,0) = limh→0f(0,h)-f(0,0)h = limh→00-0h = 0 Cela prouve quefest dérivable au point(0,0)et∂xf(0,0) =∂yf(0,0) = 0. •ClasseC1. On se demande si les dérivées partielles def: xf(x,y) =(

2xy5(x2+y2)2si(x,y)?= (0,0)

0sinon

yf(x,y) =( x2y2(3x2+y2)(x2+y2)2si(x,y)?= (0,0)

0sinon

sont fonctions continues dansR2. Elles sont continues dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on calcule les limites : lim (x,y)→(0,0)∂xf(x,y) lim(x,y)→(0,0)∂yf(x,y) à l"aide des cordonnées polaires de centre(0,0). xf(rcosθ,rsinθ) =2rcosθr5sin5θr

4(cos2θ+ sin2θ)2= 2r2cosθsin5θ.

et2r2→0sir→0. Donc lim (x,y)→(0,0)∂xf(x,y) = 0 =∂xf(0,0).

Même chose pour∂yf:

yf(rcosθ,rsinθ) =r2cos2θr2sin2θ(3r2cos2θ+r2sin2θ)r

4(cos2θ+ sin2θ)2= cos2θsin2θ(3r2cos2θ+r2sinθ)

et4r2→0sir→0. Donc lim (x,y)→(0,0)∂yf(x,y) = 0 =∂yf(0,0).

Cela prouve quef?C1(R2).

3 •Différentiabilité. La fonction est de classeC1donc elle est différentiable dansR2.

Exercice 5.Soitf:R2?→Rdéfinie par :

f(x,y) =¨ yx

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on considère la restriction defà la droitey=x: f(x,x) =12x qui ne tend pas vers0 =f(0,0)lorsquex→0. Donc la fonction n"est pas continue au point(0,0).

•Dérivabilité. On se demande si la fonction admet toutes les dérivées partielles. Si(x,y)?=

(0,0): ∂f∂x (x,y) =-2xy(x2+y2)2 ∂f∂y (x,y) =x2-y2(x2+y2)2

Doncfest dérivable dansR2\ {(0,0)}.

Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 lim h→0f(0,h)-f(0,0)h

La dérivée partielle par rapport àxexiste dansR2et la dérivée partielle par rapport ày

existe dansR2\ {(0,0)}. Doncfest dérivable dansR2\ {(0,0)}.

•Différentiabilité. La fonction est de classeC1dansR2\{(0,0)}car les dérivées partielles

sont quotient de fonctions continues. Donc elle est différentiable dansR2\ {(0,0)}. Elle ne peut pas être différentiable au point(0,0)car pas continue. Exercice 6.Une étude des glaciers a montré que la températureTà l"instantt(mesuré en jours) et à la profondeurx(mesuré en pieds) peut être modélisé par

T(x,t) =T0+T1e-λxsin(ωt-λx),

ouω=2π365 etλ >0etT1?= 0. a) Calculer∂xTet∂tT. b) Montrer queTvérifie l"équation de la chaleur∂tT=k∂xxTpour un certaink?R. Solution. Dès queλ,ω,T1,T0sont constantes on a : a) xT=-λT1e-λx€sin(ωt-λx) + cos(ωt-λx)Š tT=ωT1e-λxcos(ωt-λx) 4 b) xxT=∂2T∂

2x= 2λ2T1e-λxcos(ωt-λx)

xxT∂ tT=2λ2T1e-λxcos(ωt-λx)ωT

1e-λxcos(ωt-λx)=2λ2ω

Donc la fonctionTvérifie l"equation de la chaleur aveck=ω2λ2. Exercice 7.Soitf:R3?→Rla fonction définie par : f(x,y,z) =x3y+x2-y2-x4+z5.

Après vérification de la validité du théorème de Schwarz, calculer la matrice hessienne def.

Solution. La fonction admet 3 dérivées d"ordre1par rapport à ses 3 variables : ?f(x,y,z) = (∂xf(x,y,z),∂yf(x,y,z),∂zf(x,y,z)) = (3x2y+ 2x-4x3,x3-2y,5z4)

La fonction admet9 = 32dérivées d"ordre2:

2f∂

2x= 6xy+ 2-12x2

2f∂

2y=-2

2f∂

2z= 20z3

2f∂x∂y

= 3x2

2f∂x∂z

= 0

2f∂y∂x

= 3x2

2f∂y∂z

= 0

2f∂z∂x

= 0

2f∂z∂y

= 0

Toutes les dérivées croisées sont égales. En fait le théorème de Schwarz dit que sifest de classe

C

2dansR3alors la dérivation à l"ordre2ne depend pas de l"ordre dans lequel elle se fait.

Sous les hypothèses du théorème de Schwartz la matrice hessienne est symétrique carHi,jf=

xi,xjf=∂xj,xif=Hj,if. H f(x,y,z) =† ∂2f∂x

2∂2f∂x∂y

∂2f∂x∂z ∂2f∂y∂x ∂2f∂y

2∂2f∂y∂z

∂2f∂z∂x ∂2f∂z∂y ∂2f∂z 2 (0) H f(x,y,z) =...

6xy+ 2-12x23x20

quotesdbs_dbs1.pdfusesText_1