[PDF] [PDF] ´Eléments de calculs pour létude des fonctions de plusieurs

Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections `a la 4 2 Extrémum local d'une fonction de plusieurs variables 58 Jusqu'`a présent vous avez surtout rencontré des fonctions d'une variable Cepen-



Previous PDF Next PDF





[PDF] Exercices corrigés

Donner les extrema locaux de g et préciser s'ils sont globaux Corrigé : 1 La fonction f étant convexe sur Df , elle admet un minimum global en (2, 2) 7



[PDF] Exercices corrigés Fonctions de deux variables Fonctions convexes

1 Trouver les extrema locaux de f sur R2 2 Montrer que f poss`ede un minimum global sur R2 et qu'elle ne poss`ede pas de maximum global Corrigé 1



[PDF] Extremums locaux, gradient, fonctions implicites - Exo7 - Exercices

Extremums locaux, gradient, fonctions implicites Soit f une fonction réelle d'une variable réelle de classe C2 dans un voisinage Correction de l'exercice 1 △



[PDF] Exercice 1

On se propose de déterminer les extrema de la fonction f : R2 → R définie par f (x , de WEIERSTRASS et affirmer que f atteint son minimum global (au moins en un Ces points sont à chercher parmi les minima et maxima locaux de f sur E, 



[PDF] TD 5 Corrigé partiel

Corrigé partiel Exercice On peut donc peut appliquer le Théor`eme des extrema liés en tout point (x Cherchons d'abord `a carac tériser les points de minimum local exercice 5), que ce point est bien l'unique point de minimum global de



[PDF] ´Eléments de calculs pour létude des fonctions de plusieurs

Les exercices `a faire en TD se trouvent `a la suite du cours et les corrections `a la 4 2 Extrémum local d'une fonction de plusieurs variables 58 Jusqu'`a présent vous avez surtout rencontré des fonctions d'une variable Cepen-



[PDF] correction TD5-L2S3 (B) 2015-16 - SOS MATH

admet donc un minimum global en (0 ; 0)qui vaut (0; 0) = 0 > Exercice 4 – TD- CH5 Déterminer les extremums locaux de la fonction f définie surℝ par ( , ) = + 



[PDF] Devoir surveillé 2`eme année Analyse 4, janvier 2013 corrigé et

Exercice 1 (sur 9 points) On consid`ere la fonction de R2 dans R définie par f(x, y ) = Préciser s'il s'agit d'extrema locaux de f 3 f admet-elle des extrema globaux sur R2 ? Corrigé 1 La fonction f global ni minimum global sur R2

[PDF] extremum local exercices corrigés

[PDF] équilibre du producteur définition

[PDF] exercice microeconomie corrigé pdf

[PDF] exemple de qrc

[PDF] exercices corrigés sur le monopole

[PDF] méthodologie commentaire de texte

[PDF] extremum d'une parabole

[PDF] livre ezechiel pdf

[PDF] "une démonstration élémentaire de l'équivalence entre masse et énergie"

[PDF] e=mc2 exemple

[PDF] e=mc2 explication facile

[PDF] interview questions et reponses avec un chanteur

[PDF] question couple pour mieux se connaitre

[PDF] questionnaire marrant pour couple

[PDF] question pour son amoureux

INSTITUTUNIVERSITAIREDE TECHNOLOGIE

IUT"A"Pa ulSabatier ,Toulouse3.

DUTG´enieC ivil

ModuledeMath´ematiq ues.

MATH

EMATIQUES

El´ementsdecalculspourl'´ etude

desfonc tionsdeplusieursvariables etdes ´equati onsdi

´erentielles.

G.Ch `eze

guillaume.cheze@iut-tlse3.fr http://www.mat h.univ-toulouse.fr/!cheze/Enseignements.html 2

R`egledujeu

Ceciestunsup portdecou rspou rlemoduleM3del'IUTG´enieCiv ilde Toulouse.Danscemoduleilest questiondefo nctions deplusieursvariableset d'´equationsdi

´erentielles.

Certainspassagesdecec ourscomportentdestrous, ilssontl` avolontairement. C'est`avousde lescomp l´eterduran tl'heure decour shebdomadaire.Lapar tie ducour strait´eeenamph ith´eˆatreseracompl´e t´eeet disponibler´eg uli`erementsur internet`al'adresse:http://www.ma th.univ-toulouse.fr/!cheze/. Lesexercic es`afaireenTDsetrouvent` alasuite ducoursetles corrections`ala findech aquech apitre. Jeser aireconnaissant` atoutepersonnemesignalantuneoudeserreursse trouvantdanscedocum ent.

Apr ´esent,autravailetboncourag e`atou s!

i iiR`egledujeu

Tabledesmati` eres

R`egledujeui

IFonctionsdeplusieursvariables1

1Fonctionsdeplusieursvariables5

1.1D´efi nition.................................5

1.2Repr ´esentationgraphiqued'unefonctiondedeuxvariable s......6

1.2.1D´efin ition.............................6

1.2.2Commen trepr´esenterlegraphe d'unefonctiondedeuxvariables8

1.3Exer cicesduTD.............................14

1.4Cor rectiondesexercices.........................17

2D´eriv´eespartielles,Di

´erentielles25

2.1Rapp el...................................25

2.2D´er iv´eespartielles.............................26

2.3Di

2.4Utilisa tiondesdi

´erentielles,di

´erentielled'unefonctioncomp os´ee.30

2.5Exer cicesduTD.............................33

2.6Cor rectiondesexercices.........................34

3Approximationa

ne,Calculd'incertitude37

3.1App roximationd'unefonction`auneseulevaria ble...........37

3.2Appr oximationd'unefonctiondeplusieursvaria bles..........39

3.3Calcu ld'erreur..............................40

3.3.1Lecasd esfonc tionsd'une seulevariab le............40

3.3.2Lecasd esfonc tionsdeplu sieursvaria bles...........42

3.4Exer cicesduTD.............................45

3.5Corr ectiondesexercices.........................48

4Extremad'unefonctiondedeuxvariables55

4.1Rapp eldanslecasd'uneseu levariable.................55

4.2Extr ´emumlocald'unefonctiondeplusie ursvariables.........58

4.3Exer cicesduTD.............................64

4.4Cor rectiondesexercices.........................65

iii ivTABLEDESMATI ERES II

Equationsdi

´erentielles71

1

Equationsdi

´erentielleslin´eairesd'ordre173

1.1Pr´e sentationg´en´erale...........................73

1.1.1

Equationsdi

1.1.2Solution sd'une´equationdi

´erentielle..............74

1.1.3Inter pr´etationg´eom´etrique....................75

1.2M´e thodesder´esolutiondes´equat ionsdi

´erentielleslin´eairesd'o rdre177

1.2.1

1.2.2Calcul d'unesolutionpartic uli`ere................79

1.2.3Solution g´en´erale.........................81

1.2.4Astuce s..............................81

1.3Exer cicesduTD.............................85

1.4Corr ectiondesexercices.........................87

2

Equationsdi

´erentielleslin´eairesd'ordre2`ac oe

cientscons tants95

2.1G´en ´eralit´es................................95

2.2R´es olution.................................96

2.2.1R´esolu tiondel'´equationhomog`eneass oci´ee ..........96

2.2.2Calculd 'unesolutionpartic uli`ere................99

2.3Exe rcicesduTD.............................101

2.4Corr ectiondesexercices.........................102

IIIA nnexes109

AAnnalescorrig´ees111

BTrouverl'erreur121

CAlphabetgrec125

Premi`erepartie

Fonctionsdeplusieursvari ables

1 Jusqu'`apr´esentvousav ezsurtoutrencontr´edesf onctionsd'unevariable. Cepen- dantlesph´eno m`enes naturelsned´ependentpaseng´en´erald'uneseulevar iable.Par exemple:lavitessemoye nne vd´ependdeladistanceparc ourue detdu tempstmis poure ectuerceparcours,o nav=d/t.Un autree xempleestdonn´ep arlecalcul del'aired 'unrectang le:A=L"l.L 'aireestunefon ctiondelalon gueurLetdela largeurl.Da nscettepartie ,nousallons´etud ierlesfonctionsdeplus ieursvariables. Nousauronsun eattentiontoutepar ticuli`erep ourlesfonctionsdedeux variablescar danscecasnou spourr onsencor efairedesdess ins.Ensuitenousverronsquenous pouvonsaussifairedesca lculsded´eriv´ees .Celaserautilis´ epoure !ectuerdescalculs d'incertitudeetpourtrouverlesextr ema(ma ximum,minimum)d 'unefonctionde plusieursvariables. 3 4

Chapitre1

Fonctionsdeplusieursvari ables

Nousallonsdan scechapitred´ efinirlesfonct ionsdep lusieursvariables.Nousno us int´eresseronsplusparticuli`erementauxfonc tionsdedeu xvariablesetauxdive rses

1.1D´efinit ion

L'exempleleplussimpledefon ctio nsdedeux variablesestdo nn´epa rl'aired'un rectangle:A=L"l.Letl´etantdesnombresp ositifsnous repr´esentonscette fonctiondelamani`eresuiv ante: f:R "R #$R (L,l)%#$L"l R "R s'appelleledomaineded´ efin itiondelafonctionf. D'unemani`ere g´en´eralenouspouvonsavo irnvariableso`und´esigneunnombre entier. D´efinition1.Soitnunn ombreentieretDunepart iedeR n .Unefonctionfde nvariablesestunproc´ ed´e quiatoutn-uplet(x 1 ,...,x n )deDassocieununiqu e nombrer´eel.

Celasenote delaman i`eresuivant e:

f:D#$R (x 1 ,...,x n )%#$f(x 1 ,...,x n

Destle domaineded´ efinitiondef.

Remarque:Lanotation(x

1 ,...,x n )es tl`apourm ontrer quenousavons nva- riables.Enpratique,lo rsquen ousn'avonsquedeuxvariables nouslesnoton sxety plutˆotquex 1 etx 2 5

6Fonctionsdeplusieursvariables

Parexemple ,lafonctionsuivantedonn elad istanced'unpointdecoordonn´ees(x,y) `al'origin eduplan. f:R 2 #$R (x,y)%#$ x 2 +y 2 festunefon ctiondedeu xvariables,R 2 estsondom aineded´efi nition. Voici,iciunexe mpled'un efonct iondetroisvariables:( x;y;z). g:R"R"R #$R (x,y,z)%#$ xcos(y)+2y 3 z 5 gestunefo nctiondetr oisvariables,R"R"R estsondo maineded´e finition. Exercice1.Lafo rmulesuivantepermetd ed´efinirunefonctionde2v ariables: f(x,y)=ln (x)+s in(y)

1.Donner l'imagede (e,0).

2.D onnerleplus granddomainede d´efinitionpossibl epourf.

Solution:

1.f(e,0)=ln(e)+s in(0 )=1+0=1.

L'imagede(e,0)par fest1.

2.Pour queln(x)ex isteilfaut(etilsu"t)quex>0.Don cx&R

sin(y)ex istepourtouty&R.Doncy&R. Ainsileplusgra ndd omaineded´ efinitionpossiblepo urfest:R "R.quotesdbs_dbs26.pdfusesText_32