[PDF] [PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

Alors f '(x) = (ln x)'eln x = x(ln x)' Comme f (x) = x , on a f '(x) = 1 Donc x(lnx)' = 1 et donc (lnx)' = 1 x Exemple :



Previous PDF Next PDF





[PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

a) ln x = 2 ⇔ lnx = lne2 ⇔ x = e2 La solution est e2 b) ex+1 = 5 ⇔ ex+1 = eln 5 ⇔ x +1= ln5 ⇔ x 



[PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

Alors f '(x) = (ln x)'eln x = x(ln x)' Comme f (x) = x , on a f '(x) = 1 Donc x(lnx)' = 1 et donc (lnx)' = 1 x Exemple :



[PDF] La fonction logarithme népérien - Maths-francefr

ln(x) x = 0 • Nombre dérivé en 1 : lim h→0 ln(1 + h)



[PDF] FORMULAIRE

ln(x)/x = 0 lim x→−∞ xnex = 0 lim x→+∞ ex/xn = +∞ lim x→+∞ ln(x)/xn = 0 Dérivées Fonctions usuelles Fonctions usuelles R`egles de dérivation Exemples



[PDF] LOGARITHME NEPERIEN - Pierre Lux

ln x On écrit souvent ln x au lieu de ln ( x ) Remarques : • La fonction ln est une bijection de ] 0 ; +∞ [ dans IR • L'équivalence x ∈ IR+ * y = ln x ⇔



[PDF] FONCTION LOGARITHME NÉPÉRIEN 1 Définition de la fonction « ln

réel ln(x), tel que : x > 0 et y = ln(x) ⇔ ey = x Propriétés de la fonction ln : 1 Relations fonctionnelles : ∀a ∈ ]0, +∞[, ∀b ∈ ]0, +∞[, ∀n ∈ Z, ∀p ∈ N∗,



[PDF] cours ln

ln(x) Conséquences • Pour tout réel x strictement positif , on a eln( x) = x Lorsque x tend vers 0 par valeurs positives X tend vers +∞ et on a lnx = ln1 X



[PDF] Fiche technique sur les limites - Lycée dAdultes

1 Fonctions élémentaires Les résultats suivants font référence dans de très nombreuses situations 1 1 Limite en +∞ et −∞ f(x) xn 1 xn √ x 1 √ x ln(x) ex lim



[PDF] Croissance comparée des fonctions logarithmes, puissances et

lnx lna • Les fonctions exponentielles sont les fonctions réciproques des fonctions logarithmes La fonction réciproque de la fonction logarithme de base a est x 



[PDF] FONCTION LOGARITHME

ln(x – 10) < 0 équivaut à 0 < x – 10

[PDF] torquemada victor hugo analyse

[PDF] torquemada victor hugo acte ii scène 5

[PDF] montrer que f x x

[PDF] identifier la variable sur le graphique

[PDF] représentation graphique fonction en ligne

[PDF] graphique fonction abscisse ordonnée

[PDF] sécurité physique salle informatique

[PDF] porter plainte pour insulte et menace

[PDF] qcm vecteurs seconde

[PDF] modele de rapport d'agression au travail

[PDF] porter plainte pour menace verbale

[PDF] qcm maths seconde probabilités

[PDF] porter plainte pour agression verbale et menace

[PDF] porter plainte pour menace et intimidation

[PDF] consequence d'une plainte pour menace

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTION LOGARITHME NEPERIEN (Partie 2) I. Etude de la fonction logarithme népérien Vidéo https://youtu.be/3KLX-ScJmcI 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : Nous admettons que la fonction logarithme népérien est dérivable sur

0;+∞

. Posons f(x)=e lnx . Alors f'(x)=(lnx)'e lnx =x(lnx)' Comme f(x)=x , on a f'(x)=1 . Donc x(lnx)'=1 et donc (lnx)'= 1 x . Exemple : Dériver la fonction suivante sur l'intervalle

0;+∞

f(x)= lnx x f'(x)= 1 x

×x-lnx×1

x 2 1-lnx x 2

2) Variations Propriété : La fonction logarithme népérien est strictement croissante sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x >0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 3) Convexité Propriété : La fonction logarithme népérien est concave sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x (lnx)''=- 1 x 2 <0 donc la dérivée de la fonction ln est strictement décroissante sur

0;+∞

et donc la fonction logarithme népérien est concave sur cet intervalle. 4) Limites aux bornes Propriété :

lim x→+∞ lnx=+∞ et lim x→0 x>0 lnx=-∞

On peut justifier ces résultats par symétrie de la courbe représentative de la fonction exponentielle. 5) Tangentes particulières Rappel : Une équation de la tangente à la courbe

C f au point d'abscisse a est : y=f'(a)x-a +f(a) . Dans le cas de la fonction logarithme népérien, l'équation est de la forme : y= 1 a x-a +lna . - Au point d'abscisse 1, l'équation de la tangente est y= 1 1 x-1 +ln1 soit : y=x-1 . - Au point d'abscisse e, l'équation de la tangente est y= 1 e x-e +lne soit : y= 1 e x

. 6) Courbe représentative On dresse le tableau de variations de la fonction logarithme népérien :

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3 x 0 +∞

ln'(x) lnx

Valeurs particulières :

ln1=0 lne=1

Méthode : Etudier les variations d'une fonction Vidéo https://youtu.be/iT9C0BiOK4Y 1) Déterminer les variations de la fonction f définie sur

0;+∞

par f(x)=3-x+2lnx . 2) Etudier la convexité de la fonction f. 1) Sur

0;+∞

, on a f'(x)=-1+ 2 x 2-x x . Comme x>0 f'(x) est du signe de 2-x . La fonction f est donc strictement croissante sur 0;2 et strictement décroissante sur

2;+∞

. On dresse le tableau de variations :

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4x 0 2 +∞

f'(x) ⎪⎪ + 0 - f(x)

1+2ln2

f(2)=3-2+2ln2=1+2ln2

2) Sur

0;+∞

, on a f''(x)= -1×x-2-x ×1 x 2 -x-2+x x 2 2 x 2 <0 . La fonction f' est donc décroissante sur

0;+∞

. On en déduit que la fonction f est concave sur

0;+∞

. II. Positions relatives Vidéo https://youtu.be/RA4ygCl3ViE Vidéo https://youtu.be/0hQnOs_hcss Propriété : La courbe représentative de la fonction exponentielle est au-dessus de la droite d'équation

y=x . La droite d'équation y=x

est au-dessus de la courbe représentative de la fonction logarithme népérien. Démonstration : - On considère la fonction f définie sur

par f(x)=e x -x f'(x)=e x -1 f'(x)=0 ⇔e x -1=0 ⇔e x =1 ⇔x=0

On a également

f(0)=e 0 -0=1>0 . On dresse ainsi le tableau de variations : x -∞

0 +∞

f'(x) - 0 + f(x)

1 On en déduit que pour tout x de

, on a f(x)=e x -x>0 soit e x >x - On considère la fonction g définie sur

0;+∞

par g(x)=x-lnx g'(x)=1- 1 x x-1 x . Comme x>0 f'(x) est du signe de x-1 . On a également g(1)=1-ln1=1>0

. On dresse ainsi le tableau de variations : x 0 1 +∞

g'(x) - 0 + g(x)

1 On en déduit que pour tout x de

0;+∞

, on a g(x)=x-lnx>0 soit x>lnx

. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs26.pdfusesText_32