[PDF] [PDF] MECANIQUE DES FLUIDES I - USTO

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 5 dp : variation de pression (N/m2) 1 3 2 Masse volumique et densité a) Masse volumique 



Previous PDF Next PDF





[PDF] MECANIQUE DES FLUIDES Cours et exercices corrigés

L'étude de la mécanique des fluides remonte au moins à l'époque de la Grèce antique avec le célèbre savon Archimède, connu par son principe qui fut à l' 



[PDF] Mécanique des fluides - ENSA de Marrakech

Ce manuel de cours constitue, à l'attention des étudiants et des ingénieures, une introduction des concepts fondamentaux de la mécanique des fluides



[PDF] MECANIQUE DES FLUIDES I - USTO

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 5 dp : variation de pression (N/m2) 1 3 2 Masse volumique et densité a) Masse volumique 



[PDF] Cours de Mécanique des fluides - ENIT

L'état liquide : les liquides sont des fluides très peu compressibles et ont donc un 1 quand on parle de la vitesse v en mécanique des fluide, on parle de la 



[PDF] MÉCANIQUE DES FLUIDES Cours - femto-physiquefr

10 sept 2018 · Regardons si nous disposons d'assez d'équations pour traiter un problème de mécanique des fluides parfaits Le fluide est incompressible Dans 



[PDF] Mécanique des fluides - Unisciel

Admettre qu'un fluide est incompressible revient à dire que sa masse volumique est constante Le plus souvent, les liquides sont considérés comme des fluides 



[PDF] Mécanique des fluides (PC*) - Olivier GRANIER

2 – Equations du mouvement d'un fluide visqueux incompressible (équation de Navier-Stokes) : Le principe fondamental de la mécanique appliqué à une 



[PDF] Cours de mécanique des fluides - Racine du site web des pages

25 sept 2012 · équations ne sont pas la mécanique des fluides, elles la décrivent Cette accessibilité ne doit pas masquer cependant le fait que certains 



[PDF] MECANIQUE DES FLUIDES - Université de Tunis El Manar

ENIT – Département de Génie Civil – Laboratoire de Modélisation en Hydraulique et Environnement Enseignant : Ghazi Bellakhal ii La mécanique des fluides 



[PDF] Mécanique des fluides et transferts - Mines Saint-Etienne

Table 1 1 Equations aux dimensions des grandeurs usuelles en mécanique des fluides Exercice 1 en utilisant le Système International, donner l'équation aux 

[PDF] introduction ? la mécanique des fluides

[PDF] mécanique des structures exercices corrigés

[PDF] calcul des structures exercices corrigés

[PDF] mecanique des structures genie civil

[PDF] mécanique des structures wikipedia

[PDF] mécanique des structures tome 1 pdf

[PDF] cours calcul des structures genie civil pdf

[PDF] mécanique des structures dunod pdf

[PDF] une histoire ? quatre voix evaluation

[PDF] histoire de sorciere a imprimer

[PDF] histoire de sorciere gentille

[PDF] histoire de sorcière pour maternelle

[PDF] histoire de sorciere et de princesse

[PDF] la guerre au xxe siècle fiche de revision

[PDF] résumé mécanique du point mpsi

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 1

UNIVERSITE DES SCIENCES ET DE LA

TECHNOLOGIE MOHAMED BOUDIAF ORAN

FACULTE DE GENIE MECANIQUE

DEPARTEMENT DE GENIE MECANIQUE

MECANIQUE DES FLUIDES I

(Cours et Applications) Polycopié de Mécanique des Fluides I " Cours et applications» destiné aux étudiants de 2ème année de Licence (Semestre 3)

Sciences et Technologie (ST)

Préparé par :

Dr YOUCEFI Sarra

Maitre de Conférences classe B

Département de Génie mécanique

Année Universitaire 2016-2017

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 2

Avant propos

Ce polycopié de cours de Mécanique des Fluides I répond au programme officiel du étudiants de la deuxième année LMD (3ème semestre) du domaine Sciences et Technique des universités e fluides pour les étudiants de Génie mécanique. Ce document couvre la majorité des aspects de la mécanique des fluides. Il est comme suit : Dans le premier chapitre, on étudie les propriétés des fluides, la statique des fluides en deuxième chapitre et la dynamique des fluides parfaits incompressibles en troisième chapitre,

le dernier et quatrième chapitre est réservé à la dynamique des fluides réels incompressibles.

Ces quatre chapitres sont illustrés par des exercices résolus qui peuvent aider le

lecteur à mieux comprendre le cours.

La rédaction de ce polycopié à été tirée de la documentation existante au niveau de

toutes les bibliothèques et les sites Internet

Dr Sarra YOUCEFI

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 3

Sommaire

Chapitre 1 : Propriétés des fluides

1.1. DĠfinition d'un fluide

1.2. Système d'unitĠs

1.3. Propriétés physiques des fluides

Compressibilité

Masse volumique

Densité

Poids volumique

Volume massique

Viscosité

Chapitre 2 : Statique des fluides

2.1. Notions de pression

2.2. Pression en un point d'un fluide au repos

2.4. Transmission des pressions dans les liquides

Chapitre 3 : Dynamique des fluides parfaits incompressibles

3.1. Equations générales de la dynamique des fluides parfaits

3.2. Ecoulement permanent

3.3. Equation de continuité

3.4. Débit massique, débit volumique

3.5. Théorème de Bernoulli (écoulement sans échange de travail)

3.6. Applications du théorème de Bernoulli

Vidange d'un rĠserǀoir

Tube de Venturi

Tube de Pitot

3.7. Théorème de Bernoulli (écoulement avec échange de travail)

3.8. ThĠorğme d'Euler

Chapitre 4 : Dynamique des fluides réels incompressibles

4.1. Régimes d'Ġcoulement

4.2. Ecoulement laminaire et turbulent

4.3. Pertes de charge

Pertes de charge linéaires

Pertes de charge singulières

4.4. Théorème de Bernoulli Généralisé

Références bibliographiques

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 4

Chapitre 1 : Propriétés des fluides

1.1. DĠfinition d'un fluide

liquides et les gaz sont des fluides, ainsi que des corps plus complexes tels que les polymères ou les fluides alimentaires. Ils se déforment et s'Ġcoulent facilement. Un fluide englobe

1.2. Systğme d'unitĠs

Les unités de mesure utilisées dans ce document sont celles du système international (SI). Les unités principales de ce système sont rassemblées dans le tableau suivant : Tableau 1.1 : Principales unités dans le système international (SI) Longueur Masse Temps Pression Force Energie Puissance Mètre Kilogramme Seconde Pascal Newton Joule Watt (m) (Kg) (s) (Pa) (N) (J) (W)

L M T ML-1T-2 MLT-2 ML2T-2 ML2T-3

1.3. Propriétés des fluides

Tous les fluides possèdent des caractéristiques permettant de décrire leurs conditions

fluides on a :

1.3.1 Compressibilité

1.3.2 Masse volumique et densité

1.3.3 Poids volumique

1.3.4 Volume massique

1.3.5 Viscosité

1.3.1 Compressibilité

La compressibilité est le caractère de variation de volume de fluide avec une variation de pression (dp), le volume de fluide subit une diminution de volume (dV). L'augmentation de pression entraine une diminution de ǀolume.

Le coefficient de compressibilité est :

dpV dV dp

VdV /

(Pa-1), (m2/N) (1.1) : coefficient de compressibilité (m2/N)

V : volume de fluide (m3)

dV : variation de volume (m3) Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 5 dp : variation de pression (N/m2)

1.3.2 Masse volumique et densité

a) Masse volumique : La masse volumique d'un fluide est la masse de l'unitĠ de volume de ce fluide. Elle s'edžprime en kg/m3 Les fluides sont caractérisés par leur masse volumique V M

Volume

masse U (1.2)

M : masse du fluide (kg)

V : volume du fluide (m3)

: masse volumique (kg/m3) Fluides mercure eau de mer eau pure huile essence butane air (kg/m3) 13 600 1030 1000 900 700 2 1.293 b) Densité La densité : elle mesure le rapport de la masse volumique du fluide rapportée à un corps de rĠfĠrence. C'est une grandeur sans unitĠ dĠfinie par : réfd U (1.3)

Eau : pour les solides et les liquides

Air : pour les gaz

Exemples :

11000

1000 eaud

7.01000

700 essenced

Les liquides sont caractérisés par une masse volumique relativement importante ; liquide ب Pour les gaz, la masse volumique dépend de la température et de la pression.

1.3.3 Poids volumique (poids spécifique) :

(N/m3)

Il reprĠsente la force d'attraction edžercĠe par la terre sur l'unitĠ de ǀolume, cΖest-à-dire le

poids de l'unitĠ de ǀolume. V G V Mg V Vg g (N/m3) (1.4) Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 6

1.3.4 Volume massique (volume spécifique)

volumique M VvV V 1 (m3/kg) (1.5)

1.3.5 Viscosité

à faire déplacer les couches de fluide les unes par rapport aux autres. Lorsque le fluide se

déplace en couches parallèles ; le facteur de proportionnalité est le coefficient de viscosité

dynamique, ( ) et on écrit alors : (1.6) La viscosité cinématique, , est définie comme étant le rapport entre la viscosité dynamique et la masse volumique. (1.7)

Pa.s : Pascal seconde

Pl : Poiseuille avec 1 Pa.s = 1 Pl =1kg /ms

Dans le systğme CGS l'unitĠ est le Poise (Po) avec 1 Po = 10-1 Pl dy duW PQ Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 7

1.4. Applications

Exercice 1

Soit un ǀolume d'huile Vс 6m3 qui pèse G= 47KN. Calculer la masse volumique, le poids

spécifique et la densité de cette huile sachant que g= 9.81 m/s2. Calculer le poids G et la masse

M d'un ǀolume Vс 3 litres d'huile de boite de ǀitesse ayant une densitĠ Ġgale ă 0.9

Solution

Masse volumique

V MgV

G6*81.9

1000.47

5.798 kg/m3

Poids volumique

g

81.9*5.798

3.7833

N/m3

Densité

réfd U 1000

5.798d7985.0

Poids ;

V GY G = V* = g V = 0.9 103. 9.81. 3.10-3 = 26.48 N

Masse : M = *V = 0.9 103 * 3.10-3 = 2.7 kg

g GM 81.9

48.26kg7.2

Exercice 2

- l'accĠlĠration de la pesanteur gс9,81 mͬs2

Solution

g

81.9*1000*7.0

6867
N/m3

Exercice 3

cinématique = 1.1 St

Solution

X.

900.10*1.14

sPa.099.0 PQ Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 8

Exercice 4

La ǀiscositĠ de l'eau ă 20Σc est de 0.01008 Poise. Calculer - La viscosité absolue (dynamique)

- Si la densité est de 0.988, calculer la valeur de la viscosité cinématique en m2/s et en Stokes

Solution

1 Po = 10-1 Pl

sPa.001008.0 = 1.02 * 10-6 m2/s = 1.02 10-2 St

Exercice 5

viscosité cinématique en stockes sachant que sa densité est d=0,95.

Solution

= 10-4 m2/s = 1 St (1 stokes = 1 cm2/s = 10-4 m2/s)

Exercice 6

les paramğtres ă l'Ġtat final sont : p2= 250bar et V2= 30dm3. Calculer le coefficient de

compressibilité de ce liquide

Solution

dpV dV dp

VdV /

5.30*)50250(

)305.30( 1510*2.8 bar

PQ 988

001008.0Q

PQ 950

095.0Q

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 9

Chapitre 2 : Statique des fluides

2.1. Introduction

La statique des fluides est la branche de la mécanique des fluides qui traite principalement fluides.

2.2. Notions de pression

La pression exercée par une force F agissant perpendiculairement sur une surface S est : Force PF S (2.1) L'unitĠ lĠgale (SI) de pression est le Pascal. 1Pa = 1 2m N On utilise Ġgalement l'hectopascal (hPa) 1hPa = 100 Pa

Autres unités :

le bar 1bar = 105 Pa = 105 2m N l'atmosphğre 1atm = 101325 Pa = 1013 hPa appelée pression atmosphérique.

Pascal (Pa) Bar Atmosphère

Pascal 1 10-5 9.869 10-6

Bar 105 1 0.987167

Kgf/cm2 98039 0.9803 0.968

Atmosphère 101325 1.0133 1

cm d'eau 98.04 980 10-6 968 10-6 mm de Hg 133 1.333 10-3 1.316 10-3 mbar 102 10-3 987 10-6

2.3. Pression en un point d'un fluide au repos (Théorème de Pascal)

ds ps (ds.dy) z y dz 0 x px (dz.dy) pz (dx.dy) (N/m2) (N)

Surface (m2)

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 10 Supposons que le liquide exerce une pression px sur la surface (dz dy), une pression pz sur la surface (dx dy) et une certaine pression ps sur la surface (ds dy) de l'ĠlĠment. Fx= px (dzdy) ; Fz = pz (dxdy) ; Fs = ps (dsdy) (2.2) La force de gravité agissant sur cet élément de fluide est : dydxdzG2 (2.3)

Dans la direction horizontale des x :

σFox =0 Fx - Fs sin = 0 px (dzdy) - ps (dsdy) sin = 0 σFoz =0 Fz- Fz cos - G = 0 pz (dxdy) - ps (dsdy) cos - dydxdz 2 =0 : pzdx- psds cos- 2 )(dxdz = 0 et en sachant que ds.cos = dx, on obtient : pz - ps - 2 dz =0 c'est-à-dire dz =0, on obtient pz=ps (2.5) Des équations (2.4) et (2.5), on obtient : px = pz = ps (2.6) même (agit de façon égale) dans toutes les directions est constante en tous points d'un mġme plan horizontal. est indépendante de la direction considérée. A h pA-pB =gh

Figure 2.2

est la masse volumique du fluide en (kg/m3) h est la dénivellation entre les deux points A et B en (m) g est l'accĠlĠration de la pesanteur (9,81 Nͬkg) P = PA-PB est la différence de pression en (Pa)

La différence de pression entre deux

donnée par la relation,

PA- PB = gh

B x

A x Fluide

Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 11

2.5. Transmission des pressions dans les liquides

2.5.1. Théorème de Pascal

tous les autres points du liquide.

2.5.2. Application : Principe de la presse hydraulique

considérable à partir d'une force relatiǀement peu importante, en considĠrant la surface F1 = p1.S1 F2 = p2.S2

S1 S2

P1 p2

Lorsque les deux pistons 1 et 2 sont sur le même niveau, on a : p1=p2

Soit : F1=p1.S1 et F2 =p2.S2 donc :

1 1 1S FP 2 22S
FP p1 = p2 donc : 1 1 S F 2 2 S F 1 2 F F 1 2 S S

Si S2 ب S1 F2 ب

1 2 Dr YOUCEFI Sarra : Mécanique des fluides I (Cours et Applications) 12

2.5.3. Equilibre de deux fluides non miscibles

autre liquide non miscible au premier et de masse volumique (A) est versé, il est observé

une dénivellation h=(hA-hB) entre les deux liquides. Les deux surfaces libres étant à la

suivantes : A h B pD = patm + B g (hB-hD) patm + B g (hB-hD)= patm + A g (hA-hC) pC = patm + A g (hA-hC)

et puisque hD = hC (mġme plan horizontal d'un mġme fluide) B g (hB-hC)= A g (hA-hC)

)h- (h CB CA

BAhh UU

(2.7) La simple mesure des hauteurs des deux fluides permet de déterminer la masse manomètres à colonne de liquide ou manomètre différentiel.

2.6. Principe d'Archimğde

Si l'on edžamine le comportement d'un cylindre de longueur L et de section S, immergé dans un fluide de masse volumique dans le champ de pesanteur terrestre, ce cylindre est soumis à plusieurs forces : patm patm m C D B hA hC hDquotesdbs_dbs26.pdfusesText_32