[PDF] [PDF] IV Applications linéaires

Définition Une application linéaire de E dans F est une application f:E → F telle que pour tous vecteurs u, v ∈ E et tout scalaire 



Previous PDF Next PDF





[PDF] Rappels sur les applications linéaires

Définition 5 – Soient E et F deux espaces vectoriels de dimension finie et f ∈ L (E ,F) La dimension de Im f est appelée rang de f et est notée rg f Proposition 6 – 



[PDF] 1 Applications linéaires, Morphismes, Endomorphismes - Institut de

Définition 1 1 (Application linéaire) Soient E et F deux R-espaces vectoriels et u : E → F une application On dit que u est linéaire ou que c'est un morphisme si 



[PDF] IV Applications linéaires

Définition Une application linéaire de E dans F est une application f:E → F telle que pour tous vecteurs u, v ∈ E et tout scalaire 



[PDF] Noyau et image des applications linéaires

Définition Si f : E → F est une application linéaire, son noyau, noté Kerf est l' ensemble des vecteurs de E que f annule : Kerf := {v ∈ Ef (v)=0} Exemple Le noyau 



[PDF] APPLICATIONS LINÉAIRES - Christophe Bertault

Définition (Application linéaire de rang fini, rang) Soient E et F deux -espaces vectoriels pas nécessairement de dimension finie et f ∈ (E, F) • On dit que f est de 



[PDF] Applications linéaires I Définitions et exemples

I A Définition d'une application linéaire Définition 1 Soient E et F deux K- espaces vectoriels et f : E → F une application On dit que f est une application linéaire 



[PDF] Applications Linéaires

Définition Soit E et F deux K-espaces vectoriels et f : E → F une application appelés des endomorphismes de E Une application linéaire bijective est



[PDF] APPLICATIONS LINÉAIRES ET MATRICES Résumé de cours dalg

2 Dimension du noyau et rang Soit f : E → F est une application linéaire 2 1 Définition Si im(f) est 



[PDF] Applications linéaires

Retrouver la dimension de R2[X] 2) Rang d'une application linéaire Définition 5 Soient E et F deux R-espaces vectoriels 



[PDF] Applications linéaires - PanaMaths

Applications linéaires Définition Soit E et F deux K-espaces vectoriels et ϕ une application de E dans F On dit que ϕ est une « application linéaire » si on a : ( )



pdf Chapitre 2 : Applications linéaires

5 Réciproque d’une application linéaire bijective Lorsque f est bijective tout v ? F possède un antécédent unique par f dans E G u G Définition On appelle application réciproque de f notée f ?1 l’application qui à v associe ; c’est G u G une application linéaire : f ?1 ?L()FE Remarque (): F vfu f = ? 6 G 1: F v

[PDF] application linéaire exercices corrigés

[PDF] application matrice inversible + corrigé

[PDF] application piano numérique

[PDF] application sportcash pour android

[PDF] application working holiday visa australia

[PDF] application zimbra mail

[PDF] applications linéaires exercices corrigés

[PDF] apply for itec scaap course

[PDF] apport de la civilisation greco-romaine ? l'humanité

[PDF] apport du controle de gestion dans la performance de l'entreprise

[PDF] apposition mention de divorce sur acte de naissance

[PDF] appréciation bulletin classe

[PDF] appréciation bulletin maternelle

[PDF] appréciation bulletin prof principal

[PDF] appréciation bulletin scolaire collège

IV. Applications lineaires

1. Denition et proprietes elementaires

SoitEetFdeux espaces vectoriels surK.

Denition.Uneapplication lineairedeEdansFest une applicationf:E!Ftelle que pour tous vecteursu;v2Eet tout scalaire2K, f(u+v) =f(u) +f(v), f(u) =f(u). SiF=Kon dit quefest uneforme lineaire. SiF=E,fest appelee unendomorphisme. Pour montrer quefest une application lineaire, il sut de verier que f(u+v) =f(u) +f(v) pour tousu;v2E;2K. Proprietes.Sif:E!Fest une application lineaire alors f(~0) =~0, f(1u1++nun) =1f(u1) ++nf(un).

Preuve.

Soit= 0 etu2E. On af(u) =f(u). Oru=~0Eetf(u) =~0F, doncf(~0E) =~0F. On montre par recurrence surnla propriete suivante :

8u1;:::;un2E,81;:::;n2K, on af(1u1++nun) =1f(u1) ++nf(un).

{ Pourn= 1 on af(1u1) =1u1par denition. { On suppose que le resultat est vrai au rangn. On posev=1u1++nunetw=n+1un+1. Alorsf(1u1++nun+n+1un+1) =f(v+w) =f(v) +f(w). Par hypothese de recurrence f(v) =1f(u1) ++nf(un) et par denitionf(w) =n+1f(un+1). Donc f(1u1++nun+n+1un+1) =1f(u1) ++nf(un) +n+1f(un+1); ce qui est la propriete de recurrence au rangn+ 1. { Conclusion : la propriete de recurrence est vraie pour toutn.

Exemples.

Soitf:R3!R2denie parf(x;y;z) = (2x3y;z). Siu= (x;y;z),v= (x0;y0;z0) et2R alorsu+v= (x+x0;y+y0;z+z0) et f(u+v) = (2(x+x0)3(y+y0);z+z0) = (2x3y;z) +(2x03y0;z0) =f(u) +f(v) doncfest une application lineaire. Soitun reel etR:C!Cl'application denie parR(z) =eiz. Siz=eialors R (z) =ei(+):Rest la rotation d'angle. C'est un endormorphisme duR-espace vectorielC car siz;z02Cet2RalorsR(z+z0) =ei(z+z0) =eiz+eiz0=R(z) +R(z0). Remarque.Rest aussi un endomorphisme deCvu comme unC-espace vectoriel. SoitEl'ensemble des fonctions deRdansRetx02R. On denit'x0:E!Rpar'(f) =f(x0) (evaluation au pointx0). C'est une forme lineaire. car pour toutes fonctionsf;g2Eet2Ron a'(f+g) = (f+g)(x0) =f(x0) +g(x0) ='(f) +'(g):

Image d'une base.

Soitf:E!Fune application lineaire et (e1;:::;en) une base deE. On noteui=f(ei) pour i= 1;:::;n. Soitvun vecteur deE, qu'on decompose dans la base deE:v=x1e1++xnen.

Alorsf(v) =x1u1++xnun.

Propriete.SiEest de dimension nie, une application lineaire est denie de facon unique si on conna^t les images des vecteurs d'une base deE. 1 Reciproquement, soit (e1;:::;en) une base deEetu1;:::;undes vecteurs deF. On denit l'ap- plicationf:E!Fparf(v) =x1u1++xnunpour toutv2E, ou (x1;:::;xn) sont les coordonnees devdans la base (e1;:::;en). Alorsfest une application lineaire. Preuve.Soitu;v2Eet2K. Soit (x1;:::;xn) les coordonnees deuet (y1;:::;yn) les coor- donnees devdans la base (e1;:::;en). Alors les coordonnees deu+vsont (x1+y1;:::;xn+yn) doncf(u+v) = (x1+y1)u1+:::+ (xn+yn)un=x1u1++xnun+(y1u1++ynun). Doncf(u+v) =f(u) +f(v) etfest une application lineaire. Cas particulier.Soit (e1;:::;en) la base canonique deKn. Sif:Kn!Kest une forme lineaire, alorsf(x1;:::;xn) =x1f(e1) +x2f(e2) +:::+xnf(en), ouf(e1);:::;f(en) sont des scalaires. Propriete.L'applicationf:Kn!Kest une forme lineaire si et seulement s'il existea1;:::;an2K tels quef(x1;:::;xn) =a1x1+a2x2+:::+anxn. Exemple.f(x;y;z) = 17x35y+zest une forme lineaire deR3.

Composantes.

Denition.Sifest une application deEdansKn, lescomposantesdefsont les applicationsf1;f2;:::;fndeEdansKcorrespondant aux coordonnees dansK: pour toutu2E,f(u) = (f1(u);f2(u);:::;fn(u)). Proposition.L'applicationf:E!Kest lineaire si et seulement si ses composantesf1;f2;:::;fn sont des formes lineaires. Exemple.L'applicationf:R4!R2denie parf(x;y;z;t) = (x+2y+3z+4t;17xy13t) est une application lineaire car par ce qui precede (x;y;z;t)7!x+ 2y+ 3z+ 4tet (x;y;z;t)7!17xy13tsont des formes lineaires.

Operations sur les applications lineaires.

On denit les applicationsf+g:E!Fetf:E!Fpar (f+g)(u) =f(u) +g(u) et (f)(u) =f(u) pour toutu2E.

Theoreme.

Sifetgsont des applications lineaires deEdansFet2Kalorsf+getfsont des applications lineaires. Sif:E!Feth:F!Gsont des applications lineaires alorshfest une application lineaire deEdansG.

Preuve.Soitu;v2Eet2K.

L'applicationf+gva deEdansF. Elle est lineaire car (f+g)(u+v) =f(u+v)+g(u+v) =f(u)+f(v)+g(u)+g(v) = (f+g)(u)+(f+g)(v). Commefva deEdansFet quehva deFdansH, l'applicationhfest bien denie et va de EdansG. Notonsu0=f(u) etv0=f(v). L'applicationhfest lineaire car hf(u+v) =h(f(u) +f(v)) =h(u0+v0) =h(u0) +h(v0) =hf(u) +hf(v).

2. Applications lineaires particulieres

L'applicationidentite deEest notee IdE; elle est denie par IdE(u) =upour toutu2E. C'est une application lineaire deEdansE. Soit2K. L'homothetie de rapportest l'application lineairef:E!Edenie parf(u) =u pour toutu2E. On af=IdE. SoitE1etE2deux sous-espaces vectoriels supplementaires dansE:E=E1E2. On rappelle que tout vecteuru2Ese decompose de facon uniqueu=u1+u2avecu12E1etu22E2. 2

Projection.

On denit l'applicationp:E!Eparp(u) =u1pour toutx2E. C'est une application lineaire, appelee laprojection surE1parallelement aE2.

Propriete.p(u) =u,u2E1etp(u) =~0,u2E2.

Preuve.Soitu2E. On ecritu=u1+u2avecu12E1etu22E2et on ap(u) =u1. Sip(u) =u alorsu=u12E1. Sip(u) =~0 alorsu1=~0 etu=u22E2. Ceci demontre les deux implications p(u) =u)u2E1etp(u) =~0)u2E2. Reciproquement, siu2E1alors la decomposition deuselonE1E2estu+~0, doncp(u) =u. Siu2E2alors la decomposition deuselonE1E2est~0 +u, doncp(u) =~0. Ceci demontre les deux implicationsu2E1)p(u) etu2E2)p(u) =~0. La preuve est terminee.

Symetrie.

On denit l'applications:E!Epars(u) =u1u2pour toutu2E. C'est une application lineaire, appelee lasymetrie par rapport aE1parallelement aE2.

Propriete.s(u) =u,u2E1ets(u) =u,u2E2.

Preuve.La preuve ressemble a la precedente.

Soitu2E. On ecritu=u1+u2avecu12E1etu22E2et on as(u) =u1u2. Sis(u) =ualors u

1+u2=u1u2donc 2u2=~0, doncu2=~0 etu=u12E1. Sis(u) =ualorsu1+u2=(u1u2)

donc 2u1=~0, doncu1=~0 etu=u22E2. On a montre les deux implications \)". Reciproquement, siu2E1alors la decomposition deuselonE1E2estu+~0, doncs(u) =u. Siu2E2alors la decomposition deuselonE1E2est~0 +u, doncs(u) =u. On a montre les deux implications \(." Ceci termine la preuve.

3. Matrice d'une application lineaire

On considere deux espaces vectorielsEetFde dimension nie,B= (e1;:::;en) une base deE etB0= (e01;:::;e0p) une base deF. Denition.Soitf:E!Fune application lineaire. Lamatrice defdans les basesBetB0 est la matrice de taillenpdont les coecients de laj-ieme colonne sont les coordonnees du vecteurf(ej) dans la base (e01;:::;e0p). SiF=EetB0=Balors cette matrice est appelee lamatrice defdans la baseB. QuandE=RnetF=Rpon utilise souvent les bases canoniques deEetF. Exemple 1.Soitf:R3!R2denie parf(x;y;z) = (2x3y+z;x+z). Base canonique deR3: (e1;e2;e3) avece1= (1;0;0),e2= (0;1;0),e3= (0;0;1). Base canonique deR2: (e01;e02) avece01= (1;0) ete02= (0;1;0). On a :f(e1) = (2;1) = 2e01+e02,f(e2) = (3;0) =3e01+ 0e02,f(e3) = (1;1) =e01+e02, donc la matrice defdans les bases canoniques deR3etR2est23 1 1 0 1 Exemple 2.SoitEun espace vectoriel de dimensionnetB= (e1;:::;en) une base quelconque. La matrice de l'application identite dans la baseBest la matrice identiteIncar IdE(ei) =eipour i= 1;:::;n. Exemple 3.Soitf:R2!R2l'application lineaire telle quef(x;y) = (x+y2;x+y2). Soitu1= (1;1), u

2= (1;1),Bla base canonique deR2etB0= (u1;u2);B0est aussi une base deR2.

La matrice defdans la baseBest

12121212

3 f(u1) = (1;1) =u1=u1+ 0u2etf(u2) = (0;0) = 0u1+ 0u2donc les coordonnees def(u1) dans la base (u1;u2) sont (1;0) et les coordonnees def(u2) dans la base (u1;u2) sont (0;0). La matrice defdans la baseB0est1 0 0 0 fest la projection surRu1parallelement aRu2car ces deux applications concident sur la base (u1;u2). C'est une base adaptee a la projection. Theoreme.Soitf:E!Fune application lineaire et soitAla matrice defdans les bases B= (e1;:::;en) etB0= (e01;:::;e0p). Soituun vecteur deE, on note U=0 B @x 1... x n1 C

AetV=0

B @y 1... y p1 C Aou (x1;:::;xn) sont les coordonnees deudans la baseBet ou (y1;:::;yp) sont les coordonnees dev=f(u) dans la baseB0. AlorsV=AU.

Preuve.

SoitC1;:::;Cnles colonnes deA. Par denition deA, les coecients deCisont les coordonnees def(ei) dans la baseB0. On a vu dans le chapitre precedent queAU=x1C1+x2C2++xnCn. Donc les coecients de la matrice colonneAUsont les coordonnees dans la baseB0du vecteur x

1f(e1) +x2f(e2) ++xnf(en).

Oru=x1e1++xnen, doncf(u) =x1f(e1)+x2f(e2)++xnf(en), autrement ditAU=V. Exemple.Soitf:R3!R2denie parf(x;y;z) = (2x3y+z;x+z). Sa matrice dans les bases canoniques estA=23 1 1 0 1 A 0 @1 2 31
A =1 4 doncf(1;2;3) = (1;4). De facon generale,A0 @x y z1 A =2x3y+z x+z

Theoreme.

Soitfetgdes applications lineaires deEdansFet2K. SiAest la matrice defet siBest la matrice degdans les basesB;B0, alorsA+Best la matrice def+gdans ces bases etAest la matrice def. Soitf:E!Fetg:F!Gdes applications lineaires. SiAest la matrice defdans les bases B;B0et siBest la matrice degdans les basesB0etB00alorsBAest la matrice degfdans les basesB;B00.

Preuve.

SoitB= (e1;:::;en). On noteA1;:::;Anles colonnes deAetB1;:::;Bnles colonnes deB. On a (f+g)(ei) =f(ei) +g(ei), donc lai-ieme colonne de la matrice def+gestAi+Bi. On en deduit que la matrice def+gdans les basesB;B0estA+B. De m^eme la matrice defestA car (f)(ei) =f(ei). SoitB= (e1;:::;en),p= dimFetq= dimG. Soitu2E, notons (x1;:::;xn) les coordonnees deudans la baseB, (y1;:::;yp) les coordonnees dev=f(u) dans la baseB0et (z1;:::;zq) les coor- donnees deg(v) =gf(u) dans la baseB00. NotonsX;Y;Zles matrices colonnes correspondantes. On a vu au theoreme precedent queY=AXetZ=BY. On a doncZ=B(AX) = (BA)X. Appliquons ce resultat pouru=ei: on axi= 1 etxj= 0 sij6= 0 donc la matrice (BA)Xest egale a lai-ieme colonne deBA. Par denitionZest la matrice des coordonnees degf(u) =gf(ei) dans la baseB00. CommeZ=BAX, on en deduit que les colonnes de la matriceBAsont les coordonnees de (gf(e1);:::;gf(en)) dans la baseB00, autrement ditBAest la matrice degf dans les basesB;B00. 4

4. Denitions : injection, surjection, bijection, isomorphisme

Denition.

Soit':X!Yune application.

{'estinjectivesi deux elements distincts ont des images distinctes, autrement dit un element deYa au plus un antecedent (eventuellement zero), ou encore :'(x) ='(y))x=y. (C'est generalement cette derniere propriete qu'on utilise pour montrer l'injectivite.) {'estsurjectivesi tout point deYa au moins un antecedent (eventuellement plusieurs), ce qu'on peut ecrire'(X) =Y. {'estbijectivesi elle est injective et surjective, autrement dit tout element deYa un et un seul antecedent. Cela signie exactement que'est inversible.

Exemple 1.

e:R!Rest injective. En eet, siex=eyalors on peut prendre ln de chaque c^ote (carex>0 et e y>0) et on trouvex=y. Mais elle n'est pas surjective car8x2R;ex>0 donc par exemple1 n'a pas d'antecedent (de m^eme que tout pointy0).

Exemple 2.

Soit':R!R,'(x) =x+3.'est injective car six+3 =x0+3 alorsx=x0.'est surjective car siy2Ralors'(y3) =y. Donc'est bijective. Ceci revient a dire que dans l'equationy='(x) d'inconnuexil y a une et une seule solutionx (qui depend dey). Icix=y3 et'1(y) =y3.

Denition.

SoitE;Fdeux espaces vectoriels. UnisomorphismedeEsurFest une application lineaire f:E!Fqui est bijective.

Theoreme.

SoitE;Fdeux espaces vectoriels. Si l'applicationfest un isomorphisme deEsurFalorsf1est un isomorphisme deFsurE

Preuve.

Puisquef:E!Fest une bijection, on sait quef1:F!Eexiste et est une bijection. Il reste a montrer que c'est une application lineaire. Soitv;v02Fet2K. On poseu=f1(v) etu0=f1(v0), on af(u) =vetf(u0) =v0. Comme fest lineaire, on af(u+u0) =f(u) +f(u0), doncf(u+u0) =v+v0. En prenantf1, on trouveu+u0=f1(v+v0), autrement ditf1(v)+f1(v0) =f1(v+v0), ce qui prouve que f

1est lineaire.

Denition.

On dit que les espaces vectorielsEetFsontisomorphesou queEestisomorpheaFs'il existe un isomorphisme deEsurF.

Exemple.

Soitf:M2(R)!R4,fa b

c d = (a;b;c;d).fest une application lineaire et c'est une bijection, de bijection reciproquef1(a;b;c;d) =a b c d . Donc M

2(R) etR4sont isomorphes.

5

5. Image d'un sous-espace vectoriel, noyau

Dans cette partie,EetFsont des espaces vectoriels surKetf:E!Fest une application lineaire.

Denition.

SiAest une partie deE, on notef(A) =ff(x)2Fjx2Ag).

Theoreme.

SiGest un sous-espace vectoriel deEalorsf(G) est un sous-espace vectoriel deF.

Preuve.

On a~02Getf(~0) =~0, donc~02f(G) etf(G)6=;.

Soitv;v02f(G) et2K. Par denition il existeu;u02Gtels quef(u) =vetf(u0) =v0. On a doncv+v0=f(u) +f(u0) =f(u+u0) car l'applicationfest lineaire. Oru+u02Gcar Gest un sous-espace vectoriel, doncv+v02f(G). L'ensemblef(G) est donc un sous-espace vectoriel deF.

Denition.

On appelleimagedefl'ensemblef(E) et on le note Imf. C'est un sous-espace vectoriel deF. On appellenoyaudefl'ensemble des vecteursu2Etels quef(u) =~0 et on le note Kerf. C'est un sous-espace vectoriel deE.

Preuve.

Montrons que Kerfest un sous-espace vectoriel. On af(~0) =~0 donc~02Kerfet Kerf6=;. Soit u;u

02Kerfet2K. Par denitionf(u) =~0 etf(u0) =~0, doncf(u+u0) =f(u)+f(u0) =~0,

ce qui implique queu+u02Kerf. On en deduit que Kerfest un sous-espace vectoriel deE.

Theoreme.

quotesdbs_dbs49.pdfusesText_49