[PDF] [PDF] Analyse Asymptotique 1 : - Les Relations de - Pascal Delahaye

13 jan 2018 · Par abus de langage, on notera O(g) toute fonction étant un grand O de g au voisinage de a Lorsque f(x) = O(g(x)), on pourra dans un calcul 



Previous PDF Next PDF





[PDF] ANALYSE ASYMPTOTIQUE DE NIVEAU 1 - Christophe Bertault

x − x3 2 + x5 3 + o x5 8 Page 9 Christophe Bertault — Mathématiques en MPSI Quand on veut calculer 



[PDF] Calcul asymptotique Chapitre 14 - Alain TROESCH

Programme des colles de la semaine 14 (27/01 – 01/02) Chapitre 12 : Suites Révisions, en particulier les suites récurrentes Chapitre 13 : Calcul asymptotique



[PDF] Analyse asymptotique - Normale Sup

24 mar 2014 · elle dévoile les supercheries et les erreurs de calcul Galilée L'ordinateur peut faire plus de calculs que le cerveau de l'homme car il n'a que 



[PDF] Analyse Asymptotique 1 : - Les Relations de - Pascal Delahaye

13 jan 2018 · Par abus de langage, on notera O(g) toute fonction étant un grand O de g au voisinage de a Lorsque f(x) = O(g(x)), on pourra dans un calcul 



[PDF] Analyse asymptotique - Mathieu Mansuy

En pratique, cette formule est difficilement applicable pour l'obtention d'un DL, car elle impose de calculer les dérivées successives de f en a Exemples • exp est 



[PDF] Comportements asymptotiques

Exercice 3 Calculer un développement asymptotique à la précision x3 au voisinage à droite de 0 de xx − (sin x)sin x Exercice 4 



[PDF] Calculs asymptotiques

Fonctions fluctuantes 8 Calcul numérique et calcul asymptotique Pierre-Jean Hormière ______ « Et tu 



[PDF] EXERCICES SUR LE COMPORTEMENT ASYMPTOTIQUE - IECL

ASYMPTOTIQUE DES FONCTIONS CALCULS DE LIMITES 1 Calculer les limites des fonctions f définies ci-dessous aux points demandés a) f(x) = x2 − 3x + 



[PDF] Chapitre 12 Analyse asymptotique - Alain Camanes

Analyse asymptotique I - Relations de comparaison Dans toute la suite, I désigne un intervalle de R et a ∈ I Les fonctions f et g sont définies sur un voisinage 

[PDF] 123 La balance des paiements, outil d 'analyse

[PDF] Etude d ' #339 uvre : Bel Ami de Maupassant (1885) - Studyrama

[PDF] LE BILAN FONCTIONNEL - APPROFONDISSEMENT Objectif(s) : o

[PDF] Analyse, modélisation et simulation de l 'impulsion au sol dans les

[PDF] Etude des facteurs biomécaniques de non performance au saut en

[PDF] ANALYSE PHYSICO-CHIMIQUE

[PDF] Apprendre ? enseigner : Analyse Cognitive des Représentations

[PDF] Aux frontières de l 'action publique Ce que les politiques du - Hal

[PDF] Analyse combinatoire et probabilités - Exercices et corrigés - Free

[PDF] Analyse combinatoire

[PDF] Analyse combinatoire

[PDF] Probabilité et dénombrement - Exo7 - Emathfr

[PDF] Abrégé d 'Analyse combinatoire - Jean VAILLANT

[PDF] Chapitre 1 Définition et méthodologie de l 'analyse comparative

[PDF] Bouchard, Durkheim et la méthode comparative positive - Érudit

Analyse Asymptotique 1 :

Les Relations de comparaison

MPSI Prytan´ee National Militaire

Pascal Delahaye

13 janvier 2018

James Stirling (1692 - 1770), Ecossais `a l"origine de la formule :n!≂?ne? n⎷2πn

1 Relations de comparaison : cas des fonctions

Soient 2 fonctionsf, g:I?→Ret un pointa?

I.

Nous supposerons ici quefetgsont deux fonctions qui ne s"annulent pas sur un voisinage deapriv´e dea.

Il s"agit ici de comparer les 2 fonctions au voisinage dea.

Pour cela, formons leur rapport

f(x) g(x)et regardons ce qui se passe lorsquex→a.

3 cas int´eressants se pr´esentent alors :

Cas 1 :f(x)/g(x) est born´e au voisinage deaOn dira quefest domin´e parg:f=O(g) Cas 2 :f(x)/g(x) tend vers 0 lorsque x tend versaOn dira quefest n´egligeable devantg:f=o(g) Cas 3 :f(x)/g(x) tend vers 1 lorsque x tend versaOn dira quefetgsont ´equivalentes :f≂g 1 Cours MPSI-2017/2018 Les relations de comparaison http://pascal.delahaye1.free.fr/

1.1 La relation : "Est un grand O de ..."

Soita?

Ietfetgdeux fonctions d´efinies sur l"intervalleI?Rne s"annulant pas sur un voisinage deapriv´e dea.

D´efinition 1 :"Est un grand O de ..."

On dira que la fonctionfestun grand Ode la fonctiongau voisinage du pointassi f(x) g(x)est born´e au voisinage deapriv´e dea

Notation :f(x) =O(g(x)) au voisinage dex0.

Par abus de langage, on noteraO(g) toute fonction ´etant un grand O degau voisinage dea. Lorsquef(x) =O(g(x)), on pourra dans un calcul remplacerf(x) parO(g(x)) mais pasO(g(x)) parf(x).

Remarque1.

1. Lorsquef=O(g), on dit aussi que "fest domin´ee parg. Mais cette terminologie prˆete `a confusion...

2. La notationf=O(g) ne veut rien dire si l"on ne pr´ecise pas au voisinage de quel point on se trouve.

3. Ecriref=O(1) au voisinage deasignifie que f est born´ee au voisinage dea.

Exemple 1.Sif(x) = 3x5-x4+ 2xalors :?f=O(x) au voisinage de 0 f=O(x5) au voisinage de +∞.

1.2 "Est n´egligeable devant ..."

Soita?

Ietfetgdeux fonctions d´efinies sur l"intervalleI?Rne s"annulant pas sur un voisinage deapriv´e dea.

D´efinition 2 :La relation : "Est n´egligeable devant ..." On dira que la fonctionfestn´egligeabledevant la fonctiongau voisinage du pointassi f(x) g(x)---→x→a0

Notation :f(x) =o(g(x)) ou parfoisf(x)<< g(x)

Par abus de langage, on noterao(g) toute fonction n´egligeable devantgau voisinage dea.

Lorsquef(x) =o(g(x)), on

pourra dans un calcul remplacerf(x) paro(g(x)) mais paso(g(x)) parf(x).

Remarque2.

1. La notationf(x) =o(g(x)) ne veut rien dire si l"on ne pr´ecise pas au voisinage de quel point onse trouve.

2.f(x) =o(g(x)) signifie en gros quef(x) estbeaucoup plus petit en valeur absoluequeg(x) au voisinage dea.

3. Ecriref(x) =o(1) au voisinage deasignifie quef(x)---→x→a0

Exemple 2.Soit (p, q)?N2. On a :xp=o(xq) au voisinage de 0??p > q Exemple 3.Sif(x) = 3x5-x4+x2alors :?f=o(x) au voisinage de 0 f=o(x6) au voisinage de +∞ Proposition 1 :Lien entre les relations de comparaison Si au voisinage d"un pointaon af(x) =o(g(x)) alorsf(x) =O(g(x)).

Preuve 1 :Pas de difficult´e.

Th´eor`eme 2 :Comparaison des fonctions usuelles

Soientα, β, γ >0 trois r´eels.

1. Comparaison ln et puissance :

•en +∞: (lnx)γ=o(xα)

•en 0+:|lnx|γ=o(1

xα)2. Comparaison puissance et exponentielle :

•en +∞:xα=o(eβx)

•en +∞:xα=o(ax), lorsquea >1

•en-∞:eβx=o(1xα), lorsqueα?N

Par transitivit´e, on en d´eduit que :•en +∞: lnβx=o(eαx) 2 Cours MPSI-2017/2018 Les relations de comparaison http://pascal.delahaye1.free.fr/ Preuve 2 :Voir le cours sur les fonctions usuelles. Exemple 4.D´eterminer la limite en +∞def(x) =x3.ln2x e5x. Le th´eor`eme pr´ec´edent dit en gros la chose suivante : "Aux bornes de leur intervalle de d´efinition, les exponentielles l"emportent sur les fonctions puissance et les fonctions puissance l"emporte sur le logarithme." Proposition 3 :Op´erations sur les relations de comparaisons

1)f=o(g),g=o(h)?f=o(h) cad (transitivit´e) idem avecO

2)f1=o(g),f2=o(g)?f1+f2=o(g) cado(g) +o(g) =o(g) idem avecO

3)f1=o(g1),f2=o(g2)?f1f2=o(g1g2) cado(g1)o(g2) =o(g1g2) idem avecO

4)f=o(g)?hf=o(hg) cadho(g) =o(hg) idem avecO

5)f=o(λg) (λ?R?)?f=o(g) cado(λg) =o(g) idem avecO

Preuve 3 :Ces d´emonstrations ne posent aucune difficult´e. Exemple 5.(?) En 0, on suppose quef(x) =x+o(x) et queg(x) =x2+o(x2). Que dire quef(x) +g(x)?

Calculs d"une somme avec des "petits o"

1. On commencera par ´eliminer tous les "o" jusqu"`a ce qu"il ne restequ"uno(u(x)).

2. Puis, on ´eliminera tous les termes qui sont eux-mˆemes deso(u(x).

Exemple 6.

1. D´eterminer une fonctionftelle quexlnx=o(f(x)) au voisinage de +∞.

2. D´eterminer une fonctionftelle quelnx

x=o(f(x)) au voisinage de 0.

Exercice : 1

Ordonner les fonctions suivantes selon la relation "est n´egligeable devant" au voisinage de +∞.

x

2ex,x+x2,x2

lnx,x3lnx,exxlnx,x+ ln⎷x,x2x+ lnx,x2ln2x

1.3 La relation : "Est ´equivalent `a ..."

1.3.1 D´efinition et premi`eres propri´et´es

Soita?

Ietfetgdeux fonctions d´efinies sur l"intervalleI?Rne s"annulant pas sur un voisinage deapriv´e dea.

D´efinition 3 :"Est ´equivalent `a ..."

On dira quefetgsont´equivalentesau voisinage du pointassi : f(x) g(x)---→x→a1

Notation :f(x)≂ag(x) ouf(x)≂x→ag(x) ou encoref(x)≂g(x) s"il n"y a pas d"ambigu¨ıt´e.

Proposition 4 :Caract´erisation de l"´equivalence de deux fonctions

On a au voisinage d"un pointa:

f(x)≂g(x)??f(x) =g(x) +o(g(x))

Cela sera particuli`eremet utile lorsqu"on souhaitera remplacer une expression par un ´equivalent dans une ´egalit´e.

3 Cours MPSI-2017/2018 Les relations de comparaison http://pascal.delahaye1.free.fr/

Preuve 4 :Quasi-imm´ediat!

Remarque3.La notationf(x)≂g(x) ne veut rien dire si l"on ne pr´ecise pas au voisinage de quel point on se trouve.

Remarque4.

1.

Contrairement `a l"intuition, il n"y a aucune implication entref(x)≂ag(x) etf(x)-g(x)---→x→a0.

Ces deux propri´et´es d´efinissent des notions de proximit´e diff´erentes. 2.

Ne JAMAIS ´ecrire quef(x)≂a0 puisque la fonction nulle ne v´erifie pas les conditions d"application de lad´efinition.

Proposition 5 :La relation≂est une relation d"´equivalence surF(I,R).

Elle est en particulier sym´etrique, c"est `a dire : sifest ´equivalente `ag,gest alors ´equivalente `af.

On dira donc quefetgsont ´equivalentes.

Preuve 5 :On d´emontre facilement que≂est r´eflexive, sym´etrique et transitive.

Exemple 7.

1. Si P est une fonction polynomiale non nulle :

P est ´equivalente `a son monˆome de plus haut degr´e au voisinage de +∞ P est ´equivalente `a son monˆome de plus bas degr´e au voisinage de0

2. Au voisinage de +∞: chx≂ex

2et shx≂ex2

Remarque5.En fait, une fonction donn´ee admet une infinit´e d"´equivalents auvoisinage d"un pointa. Seulement l"int´erˆet

d"un ´equivalent est de remplacer une fonction par une autre fonction plus simple. On choisira donctoujoursl"´equivalent le

plus simple.

Par exemple, au voisinage de +∞on a :???x

2+x≂x2

x

2+x≂x2+ 2x+ 1

x

2+x≂x2-x-3. Seul le premier ´equivalent a un int´erˆet!!

On retiendra de cet exemple qu"il ne faut jamais donner un ´equivalent sous la forme d"une somme!!!

Exercice : 2

Prouver que si?x?R, on aP(x)ex+Q(x)e-x= 0 avecPetQdes fonctions polynˆomiales, alorsP=Q= 0. .Ne pas confondre la notation≂avec la notation?utilis´ee parfois en physique.

1. cosx≂1 au voisinage de 0 est un ´equivalent

2. cosx?1-x2

2au voisinage de 0 est un d´eveloppement limit´e cach´e (Notation jamais utilis´ee en Math!!)

Proposition 6 :Lien entre les relations de comparaison

On se place au voisinage d"un pointa.

1. Sif(x)≂g(x) alorsf(x) =O(g(x)).

2. Si?f(x)≂g(x)

f(x) =o(α(x))alorsg(x) =o(α(x)). 3. Si ?f(x)≂g(x)

α(x) =o(f(x))alorsα(x) =o(g(x)).

Preuve 6 :Pas de difficult´e.

4 Cours MPSI-2017/2018 Les relations de comparaison http://pascal.delahaye1.free.fr/

1.3.2 Comment obtenir des ´equivalents?

Th´eor`eme 7 :Les ´equivalents de r´ef´erences Les limites usuelles en 0, nous donnent les ´equivalents suivants au voisinage de 0 :

•sinx≂x

•arcsinx≂x

•shx≂x•tanx≂x

•arctanx≂x

•thx≂x•1-cosx≂x2

2

•1-chx≂ -x2

2•ln(1 +x)≂x

•[ex-1]≂x

•(1 +x)α-1≂αx

Exemple 8.(?) D´eterminer `a l"aide d"un changement de variables, un ´equivalent de arccosxau voisinage de 1-.

Th´eor`eme 8 :Les ´equivalents de r´ef´erences - G´en´eralisation Plus g´en´eralement, au voisinage dealorsque f(x)---→x→a0 , on a :

•sinf(x)≂f(x)

•arcsinf(x)≂f(x)

•shf(x)≂f(x)

•tanf(x)≂f(x)

•arctanf(x)≂f(x)

2

•1-chf(x)≂ -f(x)2

2•ln(1 +f(x))≂f(x)

•?ef(x)-1?≂f(x)

•[(1 +f(x))α-1]≂αf(x)

Preuve 8 :Ces r´esultats proviennent directement des limites vues dans le cours sur les fonctions usuelles.

Proposition 9 :Calculs avec des ´equivalents

1. Sif(x)---→x→aletl?= 0 alorsf≂al

2. Sif1≂ag1etf2≂ag2alors?f1f2≂ag1g2

f

1/f2≂ag1/g2

3. Soitα?R.

Sif≂agetfetgsont positives alorsfα≂agα(αest ici ind´ependant dex!).

Preuve 9 :Pas de difficult´es!

Exercice : 3

D´eterminer un ´equivalent simple des fonctions suivantes au voisinage de 0.

1.f(x) =xex

x2+ 1ln(1 +x)2.g(x) =⎷

1 + 2x-1

arcsin(cosx-1) .On ne peut pas tout faire avec des ´equivalents :

1. Soient les fonctions :f(x) =x2+x g(x) =-x2h(x) =x2+1

x.

Au voisinage de +∞on a???f(x)≂x2

g(x)≂ -x2 h(x)≂x2, et pourtant???f(x) +g(x)≂x h(x) +g(x)≂1 xef(x)?≂ex2alors queeh(x)≂ex2.

2. Soit

?f(x) = (1 +x)1 x g(x) = (1-x)1quotesdbs_dbs6.pdfusesText_12