[PDF] [PDF] Correction : Les fonctions sinus et cosinus - Lycée dAdultes

14 mar 2014 · sinus et cosinus Rappels Exercice 6) π 4 7) − 3π 4 8) − π 3 9) − π 6 Exercice 2 1) sin x = − 1 2 ⇔ sin x = sin(− π 1 Terminale S 



Previous PDF Next PDF





[PDF] Correction : Les fonctions sinus et cosinus - Lycée dAdultes

14 mar 2014 · sinus et cosinus Rappels Exercice 6) π 4 7) − 3π 4 8) − π 3 9) − π 6 Exercice 2 1) sin x = − 1 2 ⇔ sin x = sin(− π 1 Terminale S 



[PDF] 1 DEVOIR DE MATHEMATIQUES TERMINALE S FONCTIONS

Exercice 4 (8,5 points) On considère la fonction définie sur ℝpar ( ) = 3 cos 2 + 1 ) Montrer que pour tout ∈ ℝ, on a : −3 ≤ ( ) ≤ 3 2) Déterminer la parité de la 



[PDF] Terminale S - Fonctions sin x et cos x - Exercices - Physique et Maths

Exercice 5 Soit h:ℝ ℝ x (1+cos(x))⋅cos(x) et C sa courbe représentative 1 Rappeler les propriétés de parité et de périodicité de la fonction cosinus 2



[PDF] fonctions trigonométriques corrigé - Rosamaths

Exercice 3 Résoudre dans l'intervalle ] ] ; π π − l'équation 1 cos 2 x = Correction : Les solutions sont € S = − π 3 ; π 3 Exercice 4



[PDF] Fonctions trigonométriques, exercices avec corrigés

Lien vers la page mère : Exercices avec corrigés sur www deleze name Fonctions trigonométriques : cosinus, sinus, tangente Proprié- tés des 6 ) , sin (35π 6 ) Exercice 2 a) Calculez la mesure principale des angles suivants 538π 3



[PDF] Chapitre 11 Fonctions sinus et cosinus - Maths-francefr

Exercice 2 a est un réel de l'intervalle π 2 ,π On doit connaître les valeurs suivantes des fonctions sinus et cosinus : x 0 π 6 π 4 π 3 6 Solution 1) Un angle de mesure 2π 3 est supplémentaire d'un angle de mesure π Avec les deux derniers théorèmes s'achèvent la liste des formules de primitives de terminale S



[PDF] Feuille dexercices 7 Fonctions trigonométriques réciproques

Correction exercice 3 1 tan( ) √1 + tan2( ) = sin( )



[PDF] CORRECTION DM8 EXERCICE 1 : Etude dune fonction

sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire [0 ; 2 π] ou [- π ; π ] de plus f est une fonction impaire donc on peut l'étudier sur [0 ; + 6 π 4 π 3 π 2 2π 3 3π 4 5π 6 π f(x) 0 0,93 1,21 1,3 1 0,43 0,21 0,07 0 



[PDF] Fonctions trigonométriques – Exercices

Dérivation et fonctions trigonométriques – Exercices – Terminale S – G AURIOL, 6 Donner l'équation de la tangente à au point d'abscisse Sinus et cosinus



[PDF] FONCTIONS COSINUS ET SINUS - maths et tiques

Pour tout nombre réel x, on a : 1) −1≤ cosx ≤1 2) −1≤ sin x ≤1 3) cos2 x + sin2 x = 1 2) Valeurs remarquables des fonctions sinus et cosinus : x 0 π 6 π 4



pdf Fonctions trigonométriques – Exercices – Devoirs

Exercice 5 corrigé disponible Soit h:? ? x (1+cos(x))?cos(x) et C sa courbe représentative 1 Rappeler les propriétés de parité et de périodicité de la fonction cosinus 2 Etudier la parité et la périodicité de h 3 Démontrer que ?x??h'(x)=?(1+2?cosx)?sinx 4 Résoudre 1+cosx=0 puis 1+cosx>0 sur l’intervalle [0

[PDF] fonction de densité de probabilité en anglais

[PDF] fonction de référence seconde

[PDF] fonction de répartition exercice corrigé

[PDF] fonction de répartition loi normale

[PDF] fonction exponentielle en arabe

[PDF] fonction exponentielle formule pdf

[PDF] fonction exponentielle terminale es dérivé

[PDF] fonction exponentielle terminale es exercices corrigés pdf

[PDF] fonction exponentielle terminale es fiche

[PDF] fonction exponentielle terminale es type bac

[PDF] fonction exponentielle terminale s controle

[PDF] fonction gamma d'euler

[PDF] fonction grammaticale de que

[PDF] fonction homographique exercice corrigé pdf

[PDF] fonction logarithme décimal bac pro

Correction exercices14 mars 2014

Correction : Les fonctionssinus et cosinus

Rappels

Exercice1

1)-5π6

2)π

43)-2π

3

4)-π

65)-π

3

6)π

47)-3π

4

8)-π

39)-π

6

Exercice2

1) sinx=-12?sinx=sin?

-π6?

6+k2π

x=-5π

6+k2πk?Z

?-π6 ?-5π6

2) cosx=-⎷3

2?cosx=cos?5π6?

6+k2π

x=-5π

6+k2πk?Z

?5π 6 ?-5π6

3) cos(2x)=cos?

x+π4?

4+k2π

x=-π

12+k2π3k?Z

4 ?-π12 7π 12 ?-3π4

4) sin?

3x+π3?

=sin? x-π6?

4+kπ

x=5π

24+kπ2k?Z

4 -3π4 ?5π 24
?17π 24
?-7π24 ?-19π24

5) 4cos2x-1=0?cos2x=14?cosx=±12

?x=π

3+k2π

x=-π

3+k2π

x=-2π

3+k2πk?Z

3 ?2π 3 ?-π3 ?-2π3

6) 2cos2x+cosx-1=0 on poseX=cosxavec-1?X?1,

l'équation devient : 2X2+X-1=0Δ =9=32d'oùX1=1

2ouX2=-1

On revient àx: cosx=1

2ou cosx=-1

paul milan1 TerminaleS correction exercices ?x=π

3+k2π

x=-π

3+k2πk?Zoux=π+k2πk?Z

3 ?-π3

Exercice3

1)sinx<-⎷2

25π

4=-3π4-π4=7π4

SI=? -3π4;-π4? ;SJ=?5π4;7π4? 2) cosx?-⎷ 3 2

6=11π6π

6SI=? -π;-π6? ??π6;π? ;SJ=?π6;11π6? 3) sinx?-1

27π

6=-5π6-π6=11π60=2ππ=-π

SI=? -π;-5π6? -π6;π? ;SJ=?

0;7π6?

??11π6;2π? 4) cosx>⎷ 2 2

0=2π

4=7π4π

4SI=? -π4;π4? ;SJ=?

0;π4?

??7π4;2π?

Exercice4

Résoudre dans ]-π;π] :

1) voir cours

2) 4sin

2x-3?0?(2sin2x-⎷

3)(2sin2x+⎷3)?0

On cherche les valeurs qui annulent les facteurs dans l'intervalle ]-π;π]. On pose f(x)=4sin2x-3

2sinx-⎷

3=0?sinx=⎷3

2?x=π3oux=2π3

2sinx+⎷

3=0?sinx=-⎷3

2?x=-π3oux=-2π3

On peut remplir le tableau de signes suivant :

paul milan2 TerminaleS correction exercices x

2sinx-⎷

3

2sinx+⎷

3 f(x) -π-2π3-π3π32π3π --0+0-

0-0+++

0+0-0+0-

On obtient la solution :S=?

-π;-2π 3? -π3;π3? ??2π3;π?

3) On poseX=cosxavec-1?X?1, l'équation devient :

2X2-3X-2=0, on calculeΔ =25=52on obtientX1=2 (impossible) et

X 2=-1 2

On revient àx: cosx=-1

2?x=2π3oux=-2π3

4) D'après 3), on peut en déduire le tableau de signes enX

X

2X-3X-2

-1-121 0-

On veutX?-1

2alorsS=?

-2π3;2π3?

Étude de fonctions

Exercice5

1)Df=Rcar l'équation 2+cosx=0 n'a pas des solution

2) La fonctionfest paire et 2πpériodique, en effet pour tout réelx,

f(-x)=2

2+cos(-x)=22+cosx=f(x)

f(x+2π)=2

2+cos(x+2π)=22+cosx=f(x)

On étudiera les variations defsur [0;π]

3)f?(x)=2sinx

(2+cosx)2de la forme?1u? =-u?u2

Sur [0;π]

•f?(x)=0?sinx=0?x=0 oux=π •Le signe def?(x) est du signe de sinxdoncf?(x)?0

4) Pour déterminer les variation defsur [-π;0], on utilise la symétrie de la courbe par

rapport à l'axe des ordonnées (fonction paire) paul milan3 TerminaleS correction exercices x f ?(x) f(x)-π0π 0-0+0 22
2 3 2 3 22
-π2 1 2 1

On obtient alors la courbe dans l'intervalle [-π;3π], en utilisant parité et périodicité.

12

2π3π22π5π23π

2-π

2 3

Exercice6

1) La fonctionfest paire etπpériodique, en effet pour tout réelx,

2) On étudiera la fonctionf, compte tenu de la symétrie et de la périodicité sur?

0;π

2?

3) On dérive la fonction en cherchant à la factoriser.

f =-2sin2x(2cos2x+1) Sur

0;π

2? •f?(x)=0?sin2x=0 ou 2cos2x+1=0?x=0,x=π2,x=π3 •Le signe def?(x) est donné par le signe de-2cos2x-1 car sin2x?0 sur?

0;π2?

-2cos2x-1?0?cos2x?-1

2?2x??2π3;π?

?x??π3,π2?

4) Pour déterminer les variation defsur?

2,π2?

, on utilise la symétrie de la courbe par rapport à l'axe des ordonnées (fonction paire). paul milan4 TerminaleS correction exercices x f ?(x) f(x)-π2-π30π3π2

0-0+0-0+0

-1-1 -54-54 11 -54-54 -1-1

On obtient alors la courbe dans l'intervalle [-π;π], en utilisant parité et périodicité.

1 -1π

32π3π

3-2π3-π

-54π

2-π2

Exercice8

Vrai - Faux

1)Proposition 1 : VraieEn effet :?x?I,sin2x?0 et six??

4;π4?

alors 2x?? -π2;π2? donc cos(2x)? 0

Conclusion :?x?I,f(x)?0

2)Proposition 2 : Vraie

fest dérivable surIcar produit et composition de fonction dérivables surI f ?(x)=2cosxsinxcos(2x)+sin2x(-2sin(2x)) =sin(2x)cos(2x)-2sin2xsin(2x) =sin(2x)[cos(2x)-2sin2x] =sin(2x)(1-2sin2x-2sin2x) =sin(2x)(1-4sin2x)

3)Proposition 3 : VraieSix??π

6;π4?

alors 2x??π3;π2? donc sin(2x)?0

6?x?π4?12?sinx?⎷

2

2?14?sin2x?12?1?4sin2x?2?

-2?-4sin2x?-1? -1?1-4sin2x?0 paul milan5 TerminaleS correction exercices Doncf?(x)?0 donc la fonctionfest décroissante sur?π6;π4?

4)Proposition 4 : FausseDeux possibilités d'arguments :

•Six?? -π4;-π6? alors 2x?? -π2;-π3? donc sin(2x)?0

4?x?-π6? -⎷

2

2?sinx?-12?14?sin2x?12?1?4sin2x?2?

-2?-4sin2x?-1? -1?1-4sin2x?0

Doncf?(x)?0 donc la fonctionfest croissante sur?

4;-π6?

•La fonctionfest paire. En effet pourx?? -π4;-π6?

Comme l'intervalle

4;-π6?

est symétrique par rapport à 0 de l'intervalle?π6;π4? comme d'après la question 3)fest décroissante sur?π

6;π4?

alorsfest croissante sur?

4;-π6?

5)Proposition 5 : VraieIl faut déterminer les extremum de la fonctionf. Il faut alors résoudre surI:

f ?(x)=0?sin2x=0 ou sin2x=1

4?x=0 ou sinx=12ou sinx=-12

quotesdbs_dbs11.pdfusesText_17