[PDF] [PDF] Cinématique dans le plan Coordonnées polaires - Lycée dAdultes

22 jui 2017 · Un disque D de centre O tourne dans le plan Oxy à une vitesse angulaire constante L0 autour de l'axe Oz Un mobile ponctuel M part de O à 



Previous PDF Next PDF





[PDF] Chapitre 2 Courbes en coordonnées polaires - Site de Sébastien

θ −θ Page 34 Étude et tracé de courbes définies en coordonnées polaires Propriétés métriques d'une courbe Étude de la fonction f Page 35 Étude et tracé de 



[PDF] Exercices sur les courbes en coordonnées polaires dans le plan

On considère la courbe C d'équation polaire sin 2 ρ = θ Faire apparaître la courbe C sur l'écran d'une calculatrice graphique (se placer en mode polaires)



[PDF] LES GRAPHIQUES

T A F : Présentez ces données sur un graphique à coordonnées polaires Page 5 3 - Le diagramme en Z 3 – 1 Caractéristiques Il est obtenu 



[PDF] Courbes paramétrées, Courbes polaires

On considère la courbe polaire définie par ρ(θ) = sin(3θ), θ ∈ R 1 Quelle est la période de ρ? Quelle propriété graphique en déduire pour la courbe ? Solution: 



[PDF] Cinématique dans le plan Coordonnées polaires - Lycée dAdultes

22 jui 2017 · Un disque D de centre O tourne dans le plan Oxy à une vitesse angulaire constante L0 autour de l'axe Oz Un mobile ponctuel M part de O à 



[PDF] COURBES ET SURFACES - Département de Mathématiques dOrsay

4 1 2 Études de courbes en coordonnées polaires centre C Voici une représentation graphique d'une hyperbole : L'excentricité peut 



[PDF] Courbes paramétrées - Exo7 - Cours de mathématiques

Vidéo □ partie 6 Courbes en polaires : exemples lorsque le vélo avance Les coordonnées (x, y) de ce point M varient en fonction du temps : Voici la représentation graphique de quelques-unes de ces transformations x y M = (x, y )



[PDF] Chapitre 8 COURBES EN POLAIRES Enoncé des - HUVENT Gery

Exercice 8 3 Tracer la courbe d'équation polaire ρ = cos 2θ Exercice 8 4 On considère l'arc paramétré défini en coordonnées polaires par ρ(θ) = cos 2θ + cos2 



[PDF] Calculatrice graphique GeoGebrapdf

rendre le graphique plus dynamique, vous pouvez utiliser des paramètres à la place encoordonnées polaires CalculatriceGraphiqueGeogebra 6 

[PDF] graphique abscisse ordonnée en fonction de

[PDF] graphique anneau double

[PDF] graphique avec r studio

[PDF] graphique base 100 excel

[PDF] graphique boite à moustache excel

[PDF] graphique boursier excel

[PDF] graphique calc libreoffice

[PDF] graphique camembert excel 2010

[PDF] graphique capabilité excel

[PDF] graphique cartésien 6ème

[PDF] graphique cartésien définition

[PDF] graphique choc d'offre positif

[PDF] graphique courbe excel

[PDF] graphique croisé dynamique barre d erreur

[PDF] graphique d'évolution et de répartition

DERNIÈRE IMPRESSION LE22 juin 2017 à 19:56

Cinématique dans le plan

Coordonnées polaires

Table des matières

1 Cinématique dans le plan2

1.1 Coordonnées polaires. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Formules de passages. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Vecteur vitesse en coordonnées cartésiennes et coordonnéespolaires2

1.3.1 Vecteur vitesse en coordonnées cartésiennes. . . . . . . . . 3

1.3.2 Vecteur vitesse en coordonnées polaires. . . . . . . . . . . . 3

1.3.3 Vecteur accélération en coordonnées cartésiennes. . . . . . 3

1.3.4 Vecteur accélération en coordonnées polaires. . . . . . . . . 3

1.3.5 Application au mouvement circulaire. . . . . . . . . . . . . 4

2 Exemples4

2.1 Spirale d"Archimède. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mouvement d"un anneau sur une tige en rotation. . . . . . . . . . 6

2.3 Le même avec une force de rappel. . . . . . . . . . . . . . . . . . . 7

PAUL MILAN1VERS LE SUPÉRIEUR

1. CINÉMATIQUE DANS LE PLAN

1 Cinématique dans le plan

1.1 Coordonnées polaires

Définition 1 :Pour tout point M distinct de O, le couple(r,θ)tel que : r=OM etθ= (-→ı,--→OM)est appelé coordonnées polaires du point M.

Le couple(x,y)est appelé coordonnées

cartésiennes du point M. M xy r

O?ı?

1.2 Formules de passages

•Si l"on connaît les coordonnées cartésiennes : r=? x2+y2et?????cosθ=xr sinθ=y r?on déduitθ

Exemple :Soit M(⎷

3 ;-1). Déterminer les coordonnées polaires de M.

r=⎷

3+1=2 et???????cosθ=⎷

3 2 sinθ=-1

2?θ=-π

6donc M?

2 ;-π6?

•Si l"on connaît les coordonnées polaires :?x=rcosθ y=rsinθ

Exemple :Soit M?

3 ;2π

3? . Déterminer les coordonnées cartésiennes de M x=3cos2π

3=-32ety=3sin2π3=3⎷

3 2?M?

32;3⎷

3 2?

1.3 Vecteur vitesse en coordonnées cartésiennes et coordonnées

polaires M xy r O?ex? ey ?er?eθ ?vr? vθ

PAUL MILAN2VERS LE SUPÉRIEUR

1. CINÉMATIQUE DANS LE PLAN

1.3.1 Vecteur vitesse en coordonnées cartésiennes

Comme le repère (O ,?ex,?ey) est fixe. On a :

v=d--→OM dt=dxdt?ex+dydt?eydonc -→v= (x?;y?)

1.3.2 Vecteur vitesse en coordonnées polaires

Le repère (O ,?er,?eθ) est en mouvement avecθ.

Les coordonnées de

?eret?eθdans le repère (O ,?ex,?ey) sont : er= (cosθ; sinθ)et?eθ= (-sinθ; cosθ) Si l"on dérive ses vecteurs en fonction deθ, on a : d ?er d ?eθ Comme --→OM=r?er, on a pour le vecteur vitesse : v=d--→OM

Les coordonnées du vecteur vitesse sont donc :

-→v= (r?,rθ?)

1.3.3 Vecteur accélération en coordonnées cartésiennes

Comme le repère (O ,?ex,?ey) est fixe. On a :

a=d2--→OM dt2=d2xdt2?ex+d2ydt2?eydonc -→a= (x??;y??)

1.3.4 Vecteur accélération en coordonnées polaires

On dérive le vecteur vitesse pour obtenir le vecteur accélération : a=d-→v =r???er+r?d?er dθ×dθdt+ (r?θ?+rθ??)?eθ+rθ?d?eθdθ×dθdt =r???er+r?θ??eθ+ (r?θ?+rθ??)?eθ-r(θ?)2?er = (r??-rθ?2)?er+ (rθ??+2r?θ?)?eθ -→a= (r??-rθ?2,rθ??+2r?θ?)

PAUL MILAN3VERS LE SUPÉRIEUR

2. EXEMPLES

1.3.5 Application au mouvement circulaire

Théorème 1 :Les vecteurs vitesse et accélération on pour expression dans un mouvement circulaire : •Non uniforme. On poser=R(constant) etω=θ?(vitesse angulaire) -→v= (0 ,Rω)et-→a= (-Rω2,Rω?)

La vitesse normale est nulle.

•Uniforme. On poser=R(constant) etω0=θ?(vitesse angulaire constante) v= (0 ,Rω0) = (0 ;v0)et-→a= (-Rω20, 0) =? -v20 R, 0? L"accélération tangentielle est nulle et l"accélération normale est dirigée vers le centre O

2 Exemples

2.1 Spirale d"Archimède

Un disqueDde centre O tourne dans

le plan Oxyà une vitesse angulaire constanteω0autour de l"axe Oz.

Un mobile ponctuel M part de O à l"ins-

tantt=0 et est astreint à se dépla- cer une vitesse constante le long d"un rayon du disque ?v=v0?er.

Le but est d"étudier la trajectoire du

point M dans le repère fixe Oxy. O?

Mθ(t)r(t)

?ex? ey ?er?eθ On détermine les expressions deretθen fonction det. •Comme le point M est contraint de se déplacer à vitesse constante sur un rayon, on a :r(t) =v0t •Comme le disque tourne avec une vitesse angulaire constante,on a :θ(t) =ω0t Dans le référentiel terrestreR(O ;?er,?eθ): •Les coordonnées du point M sont M(r,θ) = (v0t,ω0t). •Les coordonnées du vecteur vitesse sont :-→v(r?,rθ?) = (v0,v0ω0t)

•Les coordonnées du vecteur accélération sont :-→a(r??-rθ?2,rθ??+2r?θ?) = (-v0ω20t, 2v0ω0)

PAUL MILAN4VERS LE SUPÉRIEUR

2. EXEMPLES

Pour trouver la trajectoire de M dans le repère Oxy, •on peut revenir aux coordonnées cartésiennes :?x(t) =rcosθ=v0tcos(ω0t) y(t) =rsinθ=v0tsin(ω0t)

On obtient alors une courbe paramétrique.

•mais on peut revenir à une courbe polaire définie par la fonctionr(θ) =v0ω0×θ en effetθ=ω0t?t=θ

ω0?r=v0t=v0ω0×θ.

Le rayon est alors proportionnel à l"angle. À chaque fois que le disque effectue un tourθ=2πle rayon augmente ded=v0

ω0×2π.

C"est ce qui caractérise cette courbe appelé spirale d"Archimède(comparable au sillon de notre bon vieux vinyle). On peut remplir un tableau de valeur pour les angles caractéristiques:

θ0π

4 2 3π

4π5π

4 3π 2 7π 4 r(θ)0v0π

4ω0

v0π

2ω0

3v0π

4ω0

v0π ω0

5v0π

4ω0

3v0π

2ω0

7v0π

4ω0

v0

ω0×2ππ

4π 2 3π 4 5π 4 3π

27π

2

PAUL MILAN5VERS LE SUPÉRIEUR

2. EXEMPLES

2.2 Mouvement d"un anneau sur une tige en rotation

Une tige rectiligne horizontale (OA)

tourne, à vitesse angulaire constanteω0 autour de l"axe Ozperpendiculaire au plan horizontal Oxy. Un anneau M de massemest enfilé sur cette tige et peut y glisser sans frottement.

À l"instantt, la rotation de la tige est re-

pérée par l"angleθet la position de l"an- neau sur la tige parr=OM.

À l"instantt=0, l"anneau à une vi-

tesse nulle par rapport à la tige et se trouve à une distancer0du point O. O M

θ(t)r(t)

-→T ?ex? ey ?er?eθ ?A Comme la tige a une vitesse de rotation constante, on a :θ(t) =ω0t. Dans le référentiel terrestreR(O ;?er,?eθ): •Les coordonnées du point M sont M(r,θ) = (r,ω0t). •Les coordonnées du vecteur vitesse sont :-→v(r?,rθ?) = (r?,rω0)

•Les coordonnées du vecteur accélération sont :-→a(r??-rθ?2,rθ??+2r?θ?) = (r??-rω20, 2r?ω0)

La seule force extérieure est la force

-→Texercée par la tige sur l"anneau, d"après le principe fondamental de la dynamique :m-→a=-→T. Comme il n"y a pas de frottement de la tige sur l"anneau, la composante de-→T sur ?erest nulle, d"où les coordonnée de-→T(0 ;Tθ) m -→a=-→T??m(r??-rω20) =0(1)

2mr?ω0=Tθ(2)

•Résolution de l"équation (1) du second ordre :r??-ω20r=0 Les solutions du polynôme caractéristiqueX2-ω20=0 sont±ω0. La solution générale de(1)est donc :r(t) =λeω0t+μe-ω0t. On dérive :r?(t) =λω0eω0t-μω0e-ω0t

Des conditions initiales :

?r(0) =r0 r ?(0) =0??λ+μ=r0

λ-μ=0?λ=μ=r0

2

On obtient alors la solution :r(t) =r0

2(eω0t+e-ω0t) =r0ch(ω0t)

•En remplaçant dans (2), on trouve :Tθ=2mr?ω0=2mr0ω20sh(ω0t) Remarque :Tθest toujours positive et non perpendiculaire au déplacement donc le travail de la force de réaction pour une fois n"est pas nul. Il estmoteur!

PAUL MILAN6VERS LE SUPÉRIEUR

2. EXEMPLES

Pour trouver la trajectoire de M dans le repère Oxy, •onpeutrevenirauxcoordonnéescartésiennes:?x(t) =rcosθ=r0ch(ω0t)cos(ω0t) y(t) =rsinθ=r0ch(ω0t)sin(ω0t)

On obtient alors une courbe paramétrique.

•maisonpeutreveniràunecourbepolairedéfinieparlafonctionr(θ) =r0ch(θ) en effetθ=ω0t?t=θ

ω0?r=r0ch(ω0t) =r0ch(θ).

Cette courbe est appelée spirale logarithmique. 4π

23π

4 5π 4 3π

27π

2

2.3 Le même avec une force de rappel

L"anneau est soumis, en plus, à une

force de rappel par l"intermédiaire d"un ressort de raideurkde longueur à vide rquotesdbs_dbs17.pdfusesText_23