[PDF] [PDF] Les coniques - Lycée dAdultes

13 jui 2016 · La perpendiculaire A à D passant par le foyer F est appelé axe focal de la conique Remarque : • On ne retrouve pas toutes les coniques définies 



Previous PDF Next PDF





[PDF] Coniques

12 déc 2011 · 1 Cours Nous étudierons ici les coniques exclusivement du point de vue de On appelle conique de directrice D, de foyer F et d'excentricité e 



[PDF] Chapitre 7 :Coniques

Définition : Soit C une partie du plan P On dit que C est une conique lorsqu'il existe un repère soit orthogonal à D (on choisira O en cours de démonstration)



[PDF] 1B-coniques-cours et exercices

LES CONIQUES Table des matières COURS 1) Différentes approches des hyperbole, appelés coniques, soit le point O, une droite ou deux droites sécantes  



[PDF] Les coniques - Lycée dAdultes

13 jui 2016 · La perpendiculaire A à D passant par le foyer F est appelé axe focal de la conique Remarque : • On ne retrouve pas toutes les coniques définies 



[PDF] résumé conique

Fiche de cours sur les coniques ☆ Présentation: ☆ Définition monofocale: ☆ Equation cartésienne dans le repère focal: Soit C une conique de foyer F



[PDF] Coniques, cours, Terminale STI - Mathsfg - Free

Coniques, cours, classe de terminale STI 1 Ellipse a e est appelé excentricité de la conique Propriété et De même, A' appartient à la conique • Soit b = √



[PDF] Résumé de cours : Les Coniques 1´Equation implicite

Résumé de cours : Les Coniques MPSI-Maths Une conique[1] est définie par une équation de type C : On appelle conique de directrice D, de foyer F



[PDF] Coniques - AC Nancy Metz

est appelé conique d'excentricité e, de foyer F et de directrice associée P La droite perpendiculaire `a P et passant par F est appelée l'axe focal () Coniques 4 



[PDF] Résumé : Coniques - DevoirTN

Bac mathématiques – Résumé : Coniques Définition : "Parabole" Vocabulaire : Soit P une parabole de foyer et de directrice La perpendiculaire à 



[PDF] Coniques, quadriques et formes quadratiques

que l'on se fixe, l'équation d'une même conique dans le plan est donnée par un polynôme variables que l'on effectue au cours du calcul correspondent à des 

[PDF] conique parabole

[PDF] conique exercice corrigé

[PDF] exercices corrigés coniques terminale s pdf

[PDF] conjecture geometrie

[PDF] limite de

[PDF] suite définie par récurrence limite

[PDF] conjecture d'une suite

[PDF] comportement d'une suite exercices

[PDF] comportement d'une suite 1ere s

[PDF] conjecturer le comportement d'une suite ? l'infini

[PDF] limite finie d'une suite

[PDF] conjecturer la limite d'une suite avec calculatrice casio

[PDF] déterminer la limite d'une suite

[PDF] monotonie d'une suite

[PDF] conjecturer l'expression de vn en fonction de n

[PDF] Les coniques - Lycée dAdultes DERNIÈRE IMPRESSION LE19 septembre 2021 à 15:32

Les coniques

Table des matières

1 Étude analytique2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Coniques dépourvues de centre. . . . . . . . . . . . . . . . . . . . . 2

1.3 Coniques à centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Étude géométrique7

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Construction d"une conique. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Excentricité et foyers. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Éléments caractéristiques. . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Parabole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Ellipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Hyperbole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Définition bifocale d"une ellipse et d"une hyperbole. . . . . . . . . 14

3 Équation paramétrique d"une conique15

3.1 Paramétrage d"une ellipse. . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Affinité orthogonale. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Construction de la tangente à une conique. . . . . . . . . . . . . . . 18

3.4 Équation d"une hyperbole rapportée à ses asymptotes. . . . . . . . 19

PAULMILAN1TERMINALE C PGRM1975

1 Étude analytique1.1 Définition

Définition 1 :On appelle conique les courbes du second degré c"est à dire les courbes dont les points M(x,y), dans un repère orthonormé, vérifient l"équation implicite suivante : ax

2+by2+2cx+2dy+e=0 avec|a|+|b| ?=0

Les coefficientsa,b,c,deteétant réels

Remarque :

leur avaient donné comme nom : ellipse, hyperbole, parabole. •La condition|a|+|b| ?=0 signifie que les coefficientsaetbne peuvent être nuls en même temps ce qui marque le second degré.

1.2 Coniques dépourvues de centre

Théorème 1 :Lorsque le produitab=0 avec|a|+|b| ?=0, on a si :

1)a=0 etc=0 suivant le signe deΔ?1=d2-be

•Δ?1>0deux droites horizontalesd"équationy=y1ety=y2 •Δ?1=0une droite horizontaled"équationy=y0

•Δ?1<0 aucun point

2)a=0 etc?=0une paraboled"axe parallèle à(Ox)du typeY2=2pX

3)b=0 etd=0 suivant le signe deΔ?2=c2-ae

•Δ?2>0deux droites verticalesd"équationx=x1etx=x2

•Δ?2=0une droite verticaled"équationx=x0

•Δ?1<0 aucun point

4)b=0 etd?=0une paraboled"axe parallèle à(Oy)du typeY=αX2

Démonstration :On détaillera les cas aveca=0. Les cas avecb=0 se démontrent pareillement.

1)a=0 etc=0, on obtient alors :by2+2dy+e=0. C"est une équation

réduite enyavecxquelconque. On calcule le discriminent réduit :Δ?1=d2-be •siΔ?1>0, l"équation admet deux solutions distinctes eny. On obtient alors deux droites horizontales d"équationy=y1ety=y2

PAULMILAN2TERMINALE C PRGM1975

1.2 CONIQUES DÉPOURVUES DE CENTRE

•siΔ?1=0, l"équation admet alors une solution double eny. On obtient alors une droite horizontale d"équationy=y0 •siΔ?1<0, l"équation n"admet pas de solution eny. Il n"y a donc aucun point vérifiant l"équation.

2)a=0 etc?=0 l"équation devient :

by

2+2cx+2dy+e=0?b?

y+d b? 2 -d2b2? =-2cx-e ?b? y+d b? 2 =-2cx+d2b-e?b? y+db? 2 =-2c? x+d2-be2bc? y+d b? 2 =-2cb? x+Δ?12bc?

On pose alors :p=-c

bet l"on fait le changement de repère suivant : ?X=x+Δ?1 2bc Y=y+d bde nouvelle origineΩ? -Δ?1

2bc;-db?

On obtient la courbe d"équationY2=2pXdans le repère(Ω,?ı,??)

Y=±?

2pX Exemple :Construire la parabole d"équation :y2-x-4y+2=0

On change la forme :

(y-2)2-4-x+2=0?(y-2)2=x+2

On fait le changement de repère suivant

?X=x+2

Y=y-2et on poseΩ(-2; 2)

OnobtientlaparaboleY2=X, décomposéeendeuxdemi-parabolesY=±⎷ X

1 2 3 4 5 6-1-20

-11 2345
O

Y=±⎷X

xXy Y

PAULMILAN3TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

1.3 Coniques à centre

Théorème 2 :Lorsque le produitab?=0, la conique possède un centre et son équation peut s"écrire sous la forme : aX

2+bY2=kde centreΩ?

-c a;-db?

1)ab>0 (par exemplea>0 etb>0)

•k=0 La conique se réduit àun seul pointΩ.

•k<0 La conique ne possèdeaucun point.

•k>0 La conique estune ellipsed"équation du typeX2α2+Y2β2=1

2)ab<0

•k=0 La conique est l"union dedeux droitesd"équationY=±X?-ab symétriques par rapport à(ΩX)et(ΩY) •k?=0 La conique estune hyperboled"équation du typeX2α2-Y2β2=±1 d"asymptotesY=±β αX Remarque :Toutes ses coniques possèdent deux axes de symétrie(ΩX)et(ΩY). Démonstration :On change la forme de l"équation : ax

2+by2+2cx+2dy+e=0?a?

x 2+2c a? +b? y

2+2db?

+e=0? a x+c a?

2+c2a2?

+b? y+db? 2 +d2b2? +e=0? a x+c a? 2+b? y+db? 2 =c2a+d2b-e

On pose alorsk=c2

a+d2b-eet l"on fait le changement de variable suivant : ?X=x+c a Y=y+d bde nouvelle origineΩ? -c a;-db?

On obtient alors l"équation :aX2+bY2=k

1)ab>0 (par exemplea>0 etb>0)

•Sik=0 la seule solution de l"équation estX=0 etY=0, donc la conique se réduit àΩ •Sik<0 l"équation n"a pas de solution donc la conique ne possède aucun point.

PAULMILAN4TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

•Sik>0, on divise park:akX2+bkY2=1?X2k

a+ Y2 k b=1

On pose alors commea>0,b>0 etk>0 :α2=k

aetβ=kb on obtient alors :X2

α2+Y2β2=1 équation d"une ellipse

Remarque :

α: longueur de demi-axe horizontal de l"ellipse

β: longueur de demi-axe vertical de l"ellipse

siα=βl"ellipse est alors un cercle de rayonα.

2)ab<0

•Sik=0 l"équation devientY2=-abX2?Y=±X?-ab. la conique est alors la réunion de deux droites.

•Sik?=0, on divise park:akX2+bkY2=1?X2k

a+ Y2 k b=1 Commeaetbsont de signes contraires deux cas sont envisageables : a) k a>0 etkb<0, on pose alors :α2=kaetβ2=-kb l"équation devient alors X2

α2-Y2β2=1

b) k a<0 etkb>0, on pose alors :α2=-kaetβ2=kb l"équation devient alors-X2

α2+Y2β2=1?X2α2-Y2β2=-1

On obtient alors dans ces deux cas l"équation d"une hyperbole.

Exemples :Construire les courbes suivantes :

a)x2+4y2-4x+8y-17=0 b) 4x2-9y2+8x+18y-41=0 a) On change la forme de l"équation : xquotesdbs_dbs29.pdfusesText_35