[PDF] [PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Exercice 15 Soit z un nombre complexe de module ρ, d'argument θ, et soit z son conjugué Calculer (z+z)(z2 +z2) (zn + zn) en fonction de ρ et θ Indication Τ



Previous PDF Next PDF





[PDF] Correction : conjugué dun nombre complexe Exercice 1 Exercice 2

Correction : conjugué d'un nombre complexe www bossetesmaths com Exercice 1 •−i = i ; •2+ i = 2− i ; •3−2i = 3+2i ; •−2i−5 = 2i−5 Exercice 2 1) z = 1



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1 - Licence de

Pascal Lainé 6 Exercice 28 : Soit un nombre complexe de module et d 'argument , et soit son conjugué Calculer ( + )( 2 +



[PDF] Exercices Corrigés Corps des nombres complexes Exercice 1 – 1

Exercice 1 – 1) Qu'est ce que le conjugué d'un nombre complexe ? 2) Déterminer les nombres complexes z vérifiant : (1 + i)z - 1 + i = 0 3) Préciser le 



[PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Exercice 15 Soit z un nombre complexe de module ρ, d'argument θ, et soit z son conjugué Calculer (z+z)(z2 +z2) (zn + zn) en fonction de ρ et θ Indication Τ



[PDF] NOMBRES COMPLEXES CONJUGUÉS

NOMBRES COMPLEXES (FICHE 1) Les nombres complexes Fiche d'exercices Exercice 1 Soit = + z x iy avec x et y réels ; on note Z le nombre complexe : 2



[PDF] Exercices : nombre complexe - Calcul Corrigés en vidéo et le cours

Exercices : nombre complexe - Calcul Corrigés en vidéo et le Conjugué d'un nombre complexe - Démonstrations de cours - ROC a) Démontrer que z = z



[PDF] Terminale S - Nombres complexes - Exercices - Physique et Maths

Exercice 3 Déterminer le conjugué du nombre complexe suivant et l'écrire sous forme algébrique : z 1= 2+i 1−2i Exercice 4 Résoudre dans ℂ les équations 



[PDF] Nombres complexes - Ecriture algébrique- conjugué

algébrique- conjugué Fiche exercices EXERCICE 1 Mettre chacun des nombres complexes sous forme algébrique : – z1=2(6−5i)−3(4+ i) – z2=(5+ 3i) 2



[PDF] Nombres complexes Exercices corrigés - Free

1 Résoudre dans l'ensemble ℂ des nombres complexes, l'équation 3 3 6 0 z iz i − − + = , z étant le conjugué de z 2 On considère le point A d'affixe 4 2i



[PDF] EXERCICE 1 SOLUTION - CMAP

Déterminer (x + y i), représentation cartésienne du nombre complexe : z, z' et z'' sont des nombres complexes de module 1 : leur conjugué est donc égal à 

[PDF] conjugué math

[PDF] conjugué d'un nombre complexe exemple

[PDF] conjugué de i

[PDF] conjugué d'un nombre complexe quotient

[PDF] nombre complexe conjugué demonstration

[PDF] conjugué complexe exponentielle

[PDF] inverse d'un nombre complexe

[PDF] conjugue les verbes entre parenthèses au présent de l'indicatif

[PDF] conjuguer les verbes entre parenthèses au passé composé

[PDF] conjuguer les verbes entre parenthèses au temps qui convient

[PDF] mets les verbes entre parenthèses au présent

[PDF] tout les temps de l'indicatif

[PDF] preterit be ing anglais

[PDF] pluperfect en anglais

[PDF] preterit be ing ou preterit simple

[PDF] Nombres complexes - Exo7 - Exercices de mathématiques Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument".quotesdbs_dbs29.pdfusesText_35